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Aver t issem ent
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Introduction	Générale

Le thème initial de la présente thèse était « Illusion monétaire et prix des actifs », l’illusion monétaire

étant entendue comme le biais cognitif introduit par la prise en compte des valeurs nominales plutôt

que réelles dans les évaluations et les décisions économiques des agents. Deux autres thèmes sont

ensuite venus s'ajouter à la thèse, en raison des opportunités dont j'ai bénéficié à la faveur d'un stage de

recherche au sein de l’équipe « Target 2 Securities » que j’ai effectué à la Banque Centrale

Européenne (BCE) au cours de la thèse. Le premier de ces thèmes s’intéresse à la modélisation de

l'industrie post-négociation et plus particulièrement de TARGET2-Securities (T2S). T2S est un projet

de l'Eurosystème pour le règlement des actifs financiers. Le second thème aborde le problème de la

modélisation du risque de crédit à partir des modèles de défaut.

Les sections suivantes considèrent chacun de ces trois thèmes tour-à-tour. Pour chaque thème le

contexte et la motivation des articles qui s'insèrent dans ces thèmes sont présentés. Puis, les articles se

rattachant à chacun de ces thèmes sont résumés.

Les cinq articles écrits dans le cadre de ces trois thèmes constituent la thèse. Ces articles sont listés ci-

dessous et regroupés suivant le thème auquel ils se rattachent.

Thème 1 : Illusion monétaire et prix des actifs:

- Article [1] "Money-illusion: French evidence", avec Marianne Guille;

- Article [2] "The validity and time-horizon of the Fed model: a co-integration approach" (soumis au

Journal of Empirical Finance, Septembre 2014, code manuscrit: EMPFIN-S-14-00287), complété par

un document séparé contenant des annexes additionnelles.

Thème 2 : L'industrie des services post-négociation :

- Article [3] "Optimal CSD reshaping towards T2S", avec Stephan Sauer, publié dans ECB

Working Paper Series no 1549, Mai 2013, et au Journal of Financial Market Infrastructures, vol. 2,

no. 2, pages 3-51, 2014;

- Article [4] "Endogenizing the network effect: how Monte-Carlo simulations and Graph Theory

could benefit economic modelling”. Une version révisée de cet article a été soumise en Octobre 2014 à

la revue Managerial and Decision Economics sous l’intitulé "Network effects and modelling agents’

decision to join a network".

Thème 3 : Modèles de défaut:

- Article [5] "The modelling of default rates through hidden Markov chains models", ECB project

paper, Juillet 2013.
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Thème 1 : illusion monétaire et prix des actifs

1.1. Contexte et motivation

L'illusion monétaire, entendue ici comme un biais induit par la prise en considération des valeurs

nominales plutôt que réelles dans les évaluations et les décisions économiques des agents, est sans

doute l'un des thèmes les plus anciens de l'étude de la rationalité limitée des comportements en

économie. Si Fisher (Fisher, 1928) tout comme Keynes (Keynes, 1935) lui consacre une place

importante dans ses écrits, l’illusion monétaire a cependant été négligée à partir des années 1970, en

raison du postulat dominant de rationalité de l'homo oeconomicus. Dans un tel cadre d'analyse le

comportement des agents économiques se réduit à la simple maximisation d'une fonction d'utilité sous

contrainte budgétaire, ou de leur espérance d’utilité en situation de risque, sachant qu’ils utilisent toute

l’information disponible et anticipent correctement les conséquences de leurs décisions puisqu’on

suppose depuis Lucas (Lucas, 1996) qu'ils forment des anticipations rationnelles et ne peuvent donc se

tromper de manière répétée. Cependant, l'étude des nombreux biais comportementaux qui semblent

affecter les agents sur les marchés financiers a favorisé un regain d'intérêt empirique pour l'illusion

monétaire depuis les années 1990. Différentes études empiriques à la fois quantitatives et qualitatives

mettent en évidence une certaine illusion monétaire des agents dans des contextes variés. Ces études

sont confortées par des approches plus comportementales, comme la vaste enquête menée par Shafir,

Diamond et Tversky (Shafir, Diamond, & Tversky, 1997) ou les jeux expérimentaux développés par

Fehr et Tyran (Fehr & Tyran, 2001) pour comprendre la formation des prix, qui tendent à montrer

l'existence d'un biais cognitif fort en faveur des grandeurs nominales au niveau individuel. Les

neurosciences commencent à apporter un nouvel éclairage à ces travaux. En particulier, une étude

récente, réalisée au niveau infra-personnel dans des conditions strictes par Weber et al. (Weber, 2009)

utilise l'imagerie par résonance magnétique (IRM) pour mesurer l'activation de certaines zones du

cortex préfrontal liées au sentiment de satisfaction de sujets mis face à deux situations équivalentes sur

le plan réel, mais différentes sur le plan nominal. Les auteurs montrent que dans la situation où les

valeurs nominales sont plus grandes, la satisfaction, du moins telle que mesurée par l'activation de

ladite zone du cerveau, est en moyenne 30% plus importante que dans la situation où les valeurs

nominales sont plus faibles. Ces faisceaux d'indices tendent à confirmer la prégnance de l'illusion

monétaire au niveau individuel et, comme le font remarquer Bourgeois-Gironde et Guille (Bourgeois-

Gironde & Guille 2011), ses probables répercussions sur les décisions des agents deviennent de plus

en plus difficiles à ignorer pour toute théorie économique voulant rendre compte du réel.

Bien que l’interprétation des résultats des études comportementales à la Shafir, Diamond et Tversky

(Shafir, Diamond, & Tversky, 1997) puisse toujours faire l’objet de débat, ce type d’analyse présente

certains avantages par rapport aux approches à base d'imagerie par résonance magnétique développées

récemment. Tout d'abord, et de manière évidente, un coût plus faible, ce qui permet de réaliser l'étude

sur des échantillons plus grands et ne nécessite pas l'accès à un laboratoire de neuroscience et à ses

machines. Mais également la possibilité de présenter aux sujets des situations plus complexes, ce qui

ne peut pas être fait de manière satisfaisante par l'imagerie cérébrale au niveau actuel de la recherche:

les zones activées dans le cortex cérébral par un intitulé trop complexe ne permettraient pas de

distinguer, ni d’analyser, la zone précise liée à l’illusion monétaire. Pour ces raisons, nous avons choisi
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d'adopter une démarche proche de celle de Shafir, Diamond et Tversky (Shafir, Diamond, & Tversky,

1997) pour notre premier article [1], mais s’en distinguant par quatre points principaux.

Le premier point concerne le mode opératoire de l’étude. Shafir et al. ont réalisé leur enquête avec des

étudiants de Princeton, mais aussi avec des personnes interrogées dans un aéroport et dans des centres

commerciaux. Notre démarche est différente puisque nous avons choisi d’adopter un protocole de type

expérimental, les questions étant posées aux sujets dans des conditions strictement contrôlées de

laboratoire, via une interface machine. L'échantillon est constitué d'étudiants français de niveau master

qui suivaient différents parcours: sciences, économie, droit et lettres.

Le second point concerne la présentation du contexte et la formulation des questions posées aux

sujets. En effet, le questionnaire de Shafir et al. (Shafir, Diamond, & Tversky, 1997) comporte

certaines questions dont le contexte parfois imprécis nous semble pouvoir donner lieu à des problèmes

d’interprétation. Par exemple, le Problème 1 de leur article précise dans l’énoncé que Barbara et Ann,

qui se retrouvent dans des conditions d'inflation et de hausses de salaires différentes, ont fait leurs

études ensemble. De ce fait l'énoncé inclut dans le même univers les deux personnages. Dès lors,

l'évaluation des salaires réels (relativement à la ville où elles vivent) se double d'une probable

évaluation comparative entre les deux situations, évaluation qui n'a rien d'irrationnel : les individus

peuvent en effet voyager, épargner... En outre, rien n'indique que le pouvoir d'achat (local) plus fort

dont dispose Ann ne rende sa situation objectivement supérieure à celle de Barbara. Nous avons

reformulé ce type de question en séparant plus clairement les deux cas, c'est-à-dire en donnant le choix

entre deux situations correspondant à deux univers possibles distincts et non plus liés. Considérer, par

exemple, comme le font Shafir et al, que, pour le Problème 2, la personne qui aurait fait la meilleure

affaire  immobilière est celle qui a réalisé le profit "réel" (vis-à-vis de l'inflation locale) le plus élevé,

ne va pas forcément de soi. Cette optique suppose en effet que les individus non sujets à l'illusion

monétaires sont ceux qui auraient considéré que c'est Adam, qui a acheté sa maison dans un contexte

déflationniste et l'a revendu juste un peu plus cher que le prix déflaté, qui a fait la bonne affaire, au

lieu de Carl qui l'a acheté dans un contexte inflationniste, revendue au même prix réel c'est-à-dire au

prix inflaté. Or les sujets peuvent se dire qu’Adam aurait pu simplement conserver de la monnaie et

attendre la chute des prix, ou acheter au même endroit que Carl, même si clairement Carl s'est bien

prémuni de l'inflation. Là encore, le contexte, parce qu'il précise qu'il s'agit de trois frères, qui ont

chacun acheté la maison après avoir reçu un héritage, en même temps, ramène inutilement la

comparaison des investissements dans le même univers, favorisant les comparaisons et arbitrages entre

régions dans l'esprit des répondants. Il était donc intéressant de repenser et de reformuler clairement ce

type de question, afin de démontrer la robustesse - ou non - des résultats obtenus.

Le troisième point de différence s’attache au fait que l’étude de Shafir et. al. comme la plus grande

partie des autres études sur le sujet concerne les Etats-Unis. Réaliser une étude expérimentale sur des

étudiants français permet d'étudier d'éventuels biais culturels liés à l'illusion monétaire, mais sert aussi

de test de robustesse. Même si nous ne nous attendons pas à des divergences importantes de résultats

entre pays, une même tendance de fond éliminerait la possibilité d'attribuer à des facteurs purement

culturels la propension à l'illusion monétaire des agents (dans le cas où l'on constaterait effectivement

un tel biais).

Le dernier point de différence est l’étude plus approfondie des interactions potentielles entre

certaines caractéristiques individuelles, mesurant notamment l’aversion au risque et à la perte, le

niveau d’éducation financière, les perceptions de justice ou de satisfaction personnelle vis-à-vis de soi-

même ou telle que pressentie chez les autres, avec l’illusion monétaire proprement dite. Inclure dans le
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questionnaire des questions visant à mesurer ces caractéristiques individuelles nous permet en effet de

systématiquement tester l'effet de ces caractéristiques sur l'illusion monétaire. Par exemple, le

problème posé aux sujets qui concerne l’immobilier sépare clairement la quantification de chaque

scénario comme plus ou moins profitable de la quantification de la satisfaction personnelle que le sujet

expérimenterait dans chaque scénario
2
.

Les résultats expérimentaux que nous obtenons permettent de confirmer la présence de l'illusion

monétaire, et d’étayer, entre autres, les résultats obtenus par Shafir et al. (Shafir, Diamond, & Tversky,

1997). La comparaison du prix d'achat nominal au prix de vente nominal semble flatter notre

attachement aux chiffres, au détriment de l'appréciation de la valeur réelle d'un bien, qui est ce que

nous en faisons, autrement dit à la valeur émotionnelle ou hédonique de la monnaie plutôt

qu’instrumentale (Kahneman
3

et Camerer, Loewenstein et Prelec (Camerer, Loewenstein, & Prelec,

2005).

L'illusion monétaire semble même être constatée même chez les agents économiques les plus

sophistiqués comme les investisseurs institutionnels ainsi que le souligne notamment une étude

d'Asness (Asness, 2003) qui étudie la pertinence du modèle appelé "modèle de la Fed". Ce modèle très

utilisé par les professionnels du marché compare le taux nominal des obligations du trésor américain à

long terme à une grandeur réelle, le ratio des dividendes sur le prix. Asness montre que ledit modèle

explique très bien les mouvements corrélés des deux quantités aux Etats-Unis, c'est-à-dire possède un

très grand pouvoir descriptif, alors que son pouvoir de prédiction des gains est très faible, inférieur au

seul classique quotient des dividendes sur le prix de l'action. Ainsi, les investisseurs, sur un marché

aussi important et professionnel que le marché actions, seraient capables de se tromper, et ce, de

manière répétée. La caractéristique de cette erreur est d'ailleurs de nature à ne permettre qu'un

arbitrage difficile, car nécessitant une position aux gains et pertes très volatils et devant être tenue très

longtemps (Campbell et Vuolteenaho (Campbell & Vuolteenaho, Inflation illusion and stock prices,

2004), p.7). Boucher (Boucher, 2006) confirme ces résultats, en utilisant l'extension dynamique du

modèle de Gordon proposée dans les anneés 1990 par Campbell et Shiller (Campbell & Shiller, 1989),

laquelle, contrairement au modèle de Gordon permet au taux de croissance des dividendes de varier.

Bien sûr, des explications en accord avec la rationalité des agents ont également été avancées pour

expliquer que le ratio du dividende sur le prix de l’action et l’inflation soient historiquement

2
L’illusion monétaire dans le cadre des achats ou ventes de bien immobilier mériterait selon nous une étude

spécifique, étant donné ses conséquences en termes de soutiens publique aux politiques de l’immobilier, dont

un des effets pourrait être le maintien des prix à des niveaux qui rendent in fine difficile l'accès à la propriété

pour une majeure partie de la population, en soutenant la demande face à une offre qui semble plutôt

inélastique. L'absence de tout débat public concernant le bien-fondé de ces politiques de soutien à l'immobilier

semble témoigner d'une adhésion populaire dont l’illusion monétaire pourrait être une cause. Bien que la

plupart des ménages ne possèdent qu'un ou deux logements, ou n'aient pas envie de vendre ni de spéculer car

ils utilisent ce ou ces logements comme un bien de consommation (c'est-à-dire pour leur seul usage personnel),

une appréciation est en général bien vécue, même parmi les primo accédants qui, ayant financé leur

acquisition par le crédit, jugeraient négativement une éventuelle baisse de l'immobilier, puisqu'ils estimeraient

qu'ils auraient alors "surpayé" le bien. En revanche, au niveau d'un panier de bien qui inclut le logement,

l'appréciation ou la dépréciation ne change rien au pouvoir d'achat réel : si un ménage vend sa maison il doit

souvent en racheter une autre ailleurs pour y vivre, et, en moyenne, son prix aura aussi augmenté ou baissé. Le

gain purement nominal relève de l'illusion monétaire.
3

Kahneman, Maps of Bounded Rationality: Psychology for Behavioral Economics, 2003.
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positivement corrélés. En particulier un climat d'inflation plus forte pourrait diminuer la tolérance au

risque des agents, lesquels demanderaient alors une rémunération réelle plus élevée pour leur

investissement en actions. Dans un récent article publié en 2010, Bekaret et Engstrom (Bekaert &

Engstrom, 2010) avancent une raison pour laquelle la prime de risque demandée par les investisseurs

actions serait plus importante en période de forte inflation : cela tiendrait au fait qu'historiquement,

aux Etats-Unis, l'inflation est corrélée à des périodes de plus grande incertitude macroéconomique.

Ces auteurs proposent deux manières de mesurer cette incertitude macroéconomique : une première

mesure fondée sur les divergences des prévisions du PIB réel par les professionnels, et une seconde

mesure fondée sur un modèle où ce sont les variations des habitudes des consommateurs qui reflètent

l'incertitude. Leur étude montre en outre que le degré de corrélation du taux nominal des obligations

d’Etat est plus important dans les pays ayant connu des périodes de stagflation plus fréquentes (c'est-à-

dire un degré de corrélation de l'inflation et des récessions plus important), ce qui tend à accréditer leur

théorie explicative. On peut néanmoins objecter, tout comme Boucher (Boucher, 2006), que cette

explication ne s'accompagne pas d'un fondement théorique satisfaisant (il est difficile d'expliquer

pourquoi une inflation plus élevée rendrait les investisseurs en actions plus adverses au risque sur le

long terme). En outre, les résultats de Campbel et Vuolteenaho concernant ladite prime de risque

semblent contredire cette explication. En effet, Campbel et Vuolteenaho (Campbell & Vuolteenaho,

Inflation illusion and stock prices, 2004) supposent que les agents utilisent le CAPM pour évaluer le

risque des valeurs boursières, ce qui leur permet d'estimer la prime de risque dans divers scénarios

d'inflation, puis de décomposer le ratio dividende sur prix en trois composantes dont la prime de risque

subjective. Ils constatent une insensibilité importante de cette dernière vis-à-vis de l'inflation, et

trouvent que l'inflation est au contraire très corrélée à la composante de "mispricing" de leur modèle,

confirmant une illusion monétaire dans l'évaluation du prix des actifs. Ainsi ces auteurs semblent, tout

comme Asness (Asness, 2003), confirmer la validité de l'hypothèse de Modigliani et Cohn (Modigliani

& Cohn, 1979) selon laquelle les investisseurs du marché actions seraient sujets à l'illusion monétaire,

et utiliseraient des taux nominaux pour actualiser des quantités réelles. Néanmoins leurs conclusions

sont loin de faire l'unanimité.

Le second article de la thèse [2] a donc pour objet principal d’étudier la pertinence empirique du

modèle de la Fed, ou plus précisément de déterminer son domaine de validité, aussi bien sur le plan

géographique (pays et indice de marché), sur le plan temporel (période d'étude), que sur l'horizon

possible du modèle, ou du moins de sa version linéaire. Si le modèle de la Fed fonctionne à moyen

terme mais pas à long terme, cela serait cohérent avec l'hypothèse d'une illusion monétaire des agents,

que ceux-ci corrigent dans le temps. Néanmoins, nos résultats montrent que le modèle de la Fed ne

s'applique qu'à une période restreinte (1980-2000), à un pays particulier (les Etats-Unis) et un indice

boursier donné (le Standard and Poor's 500). L'approche fréquentielle employée permet, pour ce pays

et cette période temporelle, de déterminer l'horizon du modèle, étude qui n'a à notre connaissance

jamais été tentée de manière systématique.

1.2 Résumés détaillés des articles

Article [1]: Money-illusion: French evidence

L’article a pour objectif d’étudier la sensibilité individuelle à l’illusion monétaire d’étudiants

français de niveau master à partir d’un questionnaire du type de celui de Shafir et al. (Shafir, Diamond,
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& Tversky, 1997). Le questionnaire a été posé dans un cadre expérimental sur machine permettant

d’isoler les sujets et de contrôler leur information ainsi que le report de leurs réponses de manière

rigoureuse, homogène et indépendante. Les 107 étudiants interrogés provenaient de différentes

formations (économie, sciences, droit et lettres). Les résultats de l'article confirment une forte illusion

monétaire chez les sondés, économistes inclus, mais moins importante néanmoins que dans l'étude de

Shafir (Shafir, Diamond, & Tversky, 1997). Des asymétries de perceptions de justice sociale sont

constatées entre les scénarios de hausse de salaire et d'inflation, et de baisse des prix et des salaires,

même dans le cas de contrats indexés sur l'inflation, et sur ce point les résultats du groupe d'étudiants

économistes ne diffèrent pas de ceux des non-économistes. En général les résultats diffèrent selon le

type de formation, le groupe le plus sujet à l'illusion monétaire étant le groupe d'étudiants en lettres et

en droit, suivi des étudiants en sciences, et, en dernier, le groupe d'étudiants en économie. Cela atteste

d'un certain effet apprentissage ou de dé-biaisement, même si cet effet n'est que partiel, la majorité des

étudiants, quelle que soit leur formation, étant victime d'illusion monétaire. Ce résultat conforte

l'hypothèse d'une illusion monétaire fortement ancrée dans les comportements.

L'article met aussi en évidence un biais heuristique dans l'évaluation subjective des conditions qui

ne relève pas de l'illusion monétaire proprement dite.

Article [2]: The validity and time-horizon of the Fed model: a co-integration approach

L’article propose une analyse économétrique de la pertinence du « modèle de la Fed » qui se fonde sur

la comparaison d’une grandeur nominale, le taux des obligations d’Etat, et d’une grandeur réelle, le

rendement des actions (ratios bénéfice/prix), pour identifier une sous-évaluation ou surévaluation du

marché actions, ce qui suppose une certaine illusion monétaire des agents. Plus précisément, cet article

a pour but de déterminer le domaine de validité de ce modèle en termes d’étendue géographique, de

période historique et d’horizon temporel en utilisant principalement des méthodes provenant de la

théorie de la co-intégration. En effet, puisqu’une classe d’actifs ne peut par définition pas rester

constamment sous-évaluée, on obtient comme condition nécessaire du modèle de la Fed la

stationnarité de certains indicateurs, ou de co-intégration des deux séries.

Dans cet objectif, l’article considère les indices boursiers et les taux nominaux des obligations d’Etat

de 21 pays et montre que seuls les indicateurs de trois pays répondent à ces critères de stationnarité:

les Etats-Unis, l'Italie et le Mexique. Ainsi, pour la plupart des marchés, le modèle de la Fed ne passe

pas le test le plus basique de stationnarité, et un indicateur qui devrait être stationnaire possède au

contraire une tendance stochastique, son niveau actuel dépendant de l'accumulation de chocs

antérieurs qui ne montrent pas de tendance particulière à s'auto-corriger. En outre, même pour les

Etats-Unis et le Standard and Poor's, pays et indice pour lequel le modèle a été formulé, il faut

restreindre la période d'études de 1980 à 2000 pour obtenir un indicateur stationnaire. L'étude se

focalise ensuite sur les Etats-Unis et sur cette période, et utilise une comparaison entre modèles

similaires avec ou sans composante de long terme linéaire (la relation de la Fed estimée) pour

déterminer l'horizon du modèle. Les résultats montrent  qu'à fréquence journalière, le pouvoir prédictif

du modèle est nul. Cependant, la relation estimée améliore la prévision du rendement des actions dès

la fréquence hebdomadaire, tandis que pour le taux nominal des obligations elle permet d'obtenir des

prédictions supérieures seulement à partir d'une fréquence mensuelle. Finalement, on peut conclure

que le modèle de la Fed dans lequel une comparaison entre les niveaux des deux grandeurs (rendement
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des actions et taux nominal des obligations) est prise en compte ne produit des prévisions que très

faiblement supérieures à un simple modèle dynamique incorporant seulement le feedback entre les

variations des deux variables
4
.

L'article est complété par un document de 65 pages réunissant des Annexes supplémentaires contenant

d'autres résultats quantitatifs qui confortent les conclusions de notre étude; les annexes fournies dans

ce document ne sont pas nécessaires à la compréhension de l'article.

Thème 2 : l’industrie post-négociation

2.2 Contexte et motivation

TARGET2-Securities (T2S) est un projet de l'Eurosystème pour le règlement des actifs financiers.

Développé par les banques centrales de la zone euro (Eurosystème), T2S offrira aux dépositaires

centraux nationaux (CSDs) un système harmonisé de règlement en monnaie centrale qui participe à

l'unification du marché financier européen. L'introduction de T2S aura un impact significatif sur

l'industrie des services post-négociation en Europe. L’entrée en opération de T2S est prévue pour

début 2015, mais les principaux CSD utilisent déjà la plateforme en mode de test. Aujourd'hui, environ

40 CSDs opèrent en Europe dans ce qui demeure un ensemble de marchés fragmentés, domestiques, et

donc largement monopolistes. En 2001, un groupe de travail dirigé par l'économiste Alberto

Giovannini publia un rapport affirmant que "l'inefficience de la fonction de compensation et de

règlement représente l'obstacle le plus important à l'intégration des marchés financiers en Europe". Les

inefficiences concernent, entre autres, les interfaces techniques, les formats des messages

électroniques, et les règles de finalité des règlements, ainsi que les jours ouvrés et les horaires

journaliers. Le rapport identifie 15 obstacles précis à l'efficience du marché, qui ont été nommés les 15

barrières de Giovannini; la plupart de ces barrières n'ont pas été levées depuis 2001. Ces obstacles

contribuent aux coûts plus élevés pour le règlement transfrontalier en Europe comparé, par exemple,

aux Etats-Unis
5
. Une des conséquences d'un marché pour le règlement moins efficace en Europe

qu'aux Etats-Unis est une perte relative d'attractivité des marchés financiers européens vis-à-vis des

investisseurs internationaux. Le but de T2S est essentiellement de créer un marché unique pour le

règlement en Europe
6
.

Le règlement d'actifs consiste en le transfert final des actifs du vendeur vers l'acheteur et du

paiement de l'acheteur vers le vendeur, que ce soit sur un marché boursier ou en commerce bilatéral. Il

existe plusieurs définitions d'un règlement transfrontalier. Par exemple, Oxera (Oxera, Methodology

for monitoring prices, costs and volumes of trading and post-trading services, 2001), (Oxera,

Monitoring prices, costs and volumes of trading and post-trading services, 2009) et (Oxera,

Monitoring prices, costs and volumes of trading and post-trading services, 2011)) définit une

transaction domestique comme une transaction où le domicile de l'investisseur et celui de l'actif sont

les mêmes, et parle de règlement transfrontalier lorsque ces deux domiciles sont différents. Diverses

4
Le modèle correspondant étant un VAR en première différence.

5
Voir, par exemple, ECB (2007), NERA (2004) et Oxera (2009, 2011).

6
La banque centrale européeenne fournit des informations concernant le projet sur le site www.t2s.eu.
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sources corroborent que la proportion des règlements transfrontaliers serait proche de 40% du volume

total de transaction en Europe. Tout d'abord, 37% des compagnies européennes listées seraient

possédées par des investisseurs étrangers en 2007 d'après la Federation of European Securities

Exchange (FESE). Ensuite, Clearstream (Clearstream, 2002), page 7 et 15) suggère qu'entre 35% et

40% du commerce d'actions serait transfrontalier
7
.

Enfin, Oxera (Oxera, Monitoring prices, costs and volumes of trading and post-trading services, 2011)

rapporte que les proportions des transactions transfrontalières d'actions se répartiraient entre 57% pour

les brokers locaux et 27% pour les brokers globaux en 2009
8
.

En termes de règlement cela se traduit par une utilisation de liens presque négligeable représentant 1

à 2% du règlement total. Les liens sont créés entre deux CSDs pour permettre le transfert des actifs

d'un CSD à l'autre. Dans la majorité des cas l'un de ces CSDs est le CSD où les actifs ont été émis, et

l'autre est appelé CSD investisseur
9
. Le tableau fournit en Annexe de ce document indique la part des

règlements transfrontaliers dans les différents Etats de l'Union Européenne via les liens des CSDs.

Les seules institutions où l'on observe une utilisation significative des liens, (i.e. plus de 25% du

volume total de transactions) sont les trois CSDs Baltiques (Esthonie, Lettonie et Lituanie), le CSD

Autrichien et les deux CSDs internationaux, Euroclear Bank et Clearstream Banking Luxembourg. Les

CSDs Baltiques ont une quantité relative de transactions transfrontalières importante car ils émettent

des actifs qui sont échangés sur une place boursière commune. Le CSD Autrichien OeKB a établi un

lien très utilisé avec le CSD allemand German Clearstream Banking Frankfurt. Les deux CSDs

internationaux ont un business model qui est un mélange de celui d'une banque dépositaire et d'un

CSD. Ils ont été créés en 1970 pour le règlement des eurobonds, c'est-à-dire des obligations libellées

dans une devise différente de celle du pays émetteur. Bien que les CSDs internationaux couvrent tout

type d'instruments financiers, comme les actions et les parts de fonds d'investissement, les obligations

sont restées leur principal focus et comptent pour plus de 80% du volume de leur règlement. Pour tous

les autres CSDs, l'utilisation des liens est marginale, presque inexistante.

Cette faible utilisation suggère que le règlement des transactions transfrontalières via les liens

établis par les CSDs n'est pas attractif dans la configuration actuelle du marché, probablement parce

qu'utiliser les liens est à la fois complexe et coûteux. Giovannini (Giovannini, 2001) souligne

l'inefficience de la partie cash des règlements qui manque parfois des services que savent par ailleurs

7
Les actions constituent la plus grande part du volume échangé en nombre de transactions. Au niveau du

règlement, environ 80% du volume de transaction dans les CSDs Européeens provient des actions, d'après le

Livre Bleu de la BCE (données de 2005-2010). Les obligations sont échangées moins fréquemment mais la

valeur de leur transactions est significativement plus élevée.
8

Les brokers globaux sont présents dans de multiples centres financiers, tandis que les brokers locaux sont

présent dans un unique centre financier, et par conséquent tous leurs clients établis dans un autre centre

financier que le leur sont comptabilisés  comme des clients transfrontaliers. Cela explique la part moindre des

brokers globaux.
9

L'issuer CSD ouvre un compte permettant aux investisseurs (dans un direct holding system) et/ou à leurs

intermédiaires (par exemple leurs investors CSDs) de posséder des titres. Un investor CSD -- ou une tierce

partie agissant en la qualité de l'investor CSD -- ouvre un compte avec un autre CSD (l'issuer CSD) afin de

permettre un réglement des titres. Le site internet de la BCE possède un glossaire des termes:

http://www.ecb.int/home/glossary/html/glossa.en.html.
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procurer les banques dépositaires. Les investisseurs préfèrent utiliser le service de leur réseau de

banques dépositaires ou de CSDs internationaux
10

. D'après Clearstream (Clearstream, 2002), les

banques dépositaires offrent un meilleur niveau de service ainsi qu'une gamme plus large de services,

tels que le calcul des éventuelles taxes, un reporting extensif et personnalisé, la gestion des droits de

votes liés aux actions, etc. tandis que les CSDs se focalisent sur des processus automatiques et moins

complexes liés aux règlements domestiques. La figure ci-dessous résume les différents canaux

permettant de réaliser des règlements transfrontaliers:

Les différentes manières d'accéder à un marché étranger en Europe. Source: Giovannini

(2001, p. 8).

L'introduction de T2S permettra d'éliminer les obstacles à l'utilisation des liens entre CSDs, en

particulier ceux dus à la différence des interfaces techniques, au format des messages, au règlement

intra-journalier de finalité, aux horaires d'opérations. T2S sera aussi probablement un catalyseur pour

une harmonisation plus en profondeur de l'industrie des services post-négociation. T2S favorisera

aussi la compétition, non seulement en diminuant les coûts d'entrée du marché de manière drastique

pour les nouveaux entrants (puisque ceux-ci pourront simplement utiliser la plateforme IT de T2S pour

les règlements au lieu de devoir construire la leur propre), mais aussi en poussant les CSDs à se

10
Un correspondant titre ("custodian") est une entité, souvent une banque, qui pourvoit des "custody

services", tels que le "safekeeping", et l'administration des instruments financiers pour ses clients. Les

correspondants titres ou "custodians" pour reprendre le mot anglais, peuvent pourvoir d'autres services à leurs

clients, tels le "clearing" et le règlement ("settlement"), le "cash management", des services liés aux

conversions de devises, ainsi que des prêts d'instruments financiers. Un "sub-custodian" est un custodian

pourvoyant ses services à un autre custodian. Clearstream (2005) définit un "agent bank" comme une banque,

soit locale soit branche d'une banque étrangère, qui agit de la part du correspondant titre d'un investisseur

étranger. Un "local agent" est un correspondant titre qui pourvoit ses services pour des instruments financiers

échangé et réglés dans le pays où il se trouve à des intermédiaires et contreparties d'un autre pays.
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déplacer vers le haut de la chaîne des valeurs ajoutées des valeur ajoutée et en favorisant ainsi la

compétition entre CSDs et banques dépositaires.

La contribution clef de T2S, qui se traduit au niveau des hypothèses du modèle général présenté

dans [4], est que le processus technique pour un règlement domestique dans T2S est

fondamentalement le même que pour un règlement transfrontalier avec n'importe quel autre CSD

ayant rejoint T2S. Ainsi, l'ensemble des liens vers l'intégralité des CSDs participant à T2S se trouve

entièrement établi pour un CSD joignant T2S, du moins du point de vue technique. D'un point de vue

légal les CSDs devront également signer un contrat concernant l'utilisation des liens. Le critère

d'éligibilité au projet (voir (ECB, T2S Economic Feasibility Study, 2007), en particulier, le critère 3)

assure que chaque CSD joignant T2S a le droit et le devoir de rendre ses actifs disponibles pour un

transfert via un lien vers tout autre CSD joignant T2S. T2S chargera le même prix par transaction, que

cette transactions soit transfrontalière et implique un lien entre deux CSDs ou non. Ainsi T2S traitera

toute transaction comme domestique, et permettra aux agents économiques de bénéficier de réductions

de coûts dues aux économies d'échelles, ainsi qu'à une plus grande compétition entre CSDs.

Néanmoins, pour que le projet soit efficace, il est nécessaire que les CSDs adaptent leur propre

architecture IT à la nouvelle plateforme. Tous les CSDs en Europe sont effet incités à déléguer la

fonction "règlement" à la plateforme T2S. Ainsi, même si les CSDs continuent à maintenir la relation

légale avec leurs clients, et à fournir à leurs clients d'autres services que le règlement, techniquement

toutes les opérations de règlement seront réalisées dans T2S. Un dialogue informatique constant est

donc requis entre chaque CSD et T2S, d'où l'importance, pour éviter la duplication des messages et les

coûts par transaction qu'elle provoque, d'adapter la plateforme IT des CSDs. Le succès final du projet

de l'Eurosystème dépend donc en partie de l'adaptation et de la coopération des CSDs, qui sont la

plupart du temps des acteurs du secteur privé.

Le troisième article de la thèse [3] s'insère dans cette problématique. Il a pour objet d'étudier, à

l'aide d'outils empruntés à la théorie des jeux, la possibilité, ainsi que la persistance possible, d'un

scénario adverse en termes de coûts pour l'utilisateur final, à savoir une collusion tacite des CSDs pour

ne pas s'adapter à T2S après avoir rejoint le système, en faisant supporter le coût plus grand des

transactions unitaires à leurs clients
11

. Il s'agit de la première étude théorique de la décision de

s'adapter techniquement ("reshaping decision"). L'Eurosystème a publié deux études, purement

descriptives (c'est-à-dire sans modélisation des décisions stratégiques des partis concernés) sur T2S et

les bénéfices économiques potentiels liés au projet. L'étude de faisabilité économique de T2S (ECB,

T2S Economic Feasibility Study, 2007) a été publiée en 2007. Ensuite, l'Eurosystème a publié une

évaluation de l'impact économique de T2S (ECB, T2S Economic Impact Assessment, 2008), réalisée

avec la participation des acteurs de marché
12

. Sur la base de la méthodologie sélectionnée, la BCE a

demandé à tous les CSDs Européens, et à un sous-ensemble de leurs clients, des données spécifiques.

Les résultats sont résumés dans le document (ECB, T2S Economic Impact Assessment, 2008) et

montrent que T2S devrait permettre de réaliser des économies de coûts de l'ordre de 145 à 223

millions d'euros par an, suivant l'hypothèse de couverture de devises retenue
13

. Le focus de ces deux

11
Les clients des CSDs sont la plupart du temps les banques commerciales, mais faire passer des frais de

transactions plus élevés peut avoir des conséquences sur les clients de ces banques (investisseurs privés,

particuliers, fonds de pensions).
12

La méthodologie fut inter alia sujette à un appel d'offre publique, voir

http://www.ecb.int/paym/cons/html/t2s-2.en.html.
13

En effet d'autres devises que l'euro seront éligible pour T2S.
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études quantitatives de la BCE a été l'évaluation des coûts associés à T2S et la réduction des coûts des

CSDs associée, en termes des coûts de back-office et en termes d'économie de collatéral et de liquidité

supplémentaire
14

. Aucune étude n'avait tenté jusqu'à présent de modéliser directement l'impact positif

sur les bénéfices liés à T2S qu'auraient les effets de réseaux. Un aspect fondamental de l'industrie des

services post-négociations en général est pourtant bien son effet de réseau inhérent: la participation

d'acteurs de marché supplémentaires augmente l'utilité de tous les participants du réseau de règlement.

En effet, plus de participants implique que chaque participant peut établir des liens avec plus de

partenaires, donc que la liquidité s'accroît (voir par exemple (ECB, The Payment System. Payments,

Securities and Derivatives, and the Role of the Eurosystem, 2010), chapitre 5). L'industrie des services

post-négociations se caractérise également par de grandes économies d'échelles (voir (P. Van

Cayseele, 2007) pour une estimation quantitative). Ces effets expliquent que le coût de transaction

moyen tend à décroître quand le nombre d'utilisateurs du réseaux augmente. Ces effets potentiels sont

importants pour expliquer la décision future des acteurs économiques de joindre ou non un réseau

donné. En effet, bien que la participation à T2S ne soit pas obligatoire, T2S permettra à chaque CSD

joignant son réseau d'être un point d'entrée unique pour ses clients sur toute l'intégralité du marché des

autres CSDs participants au projet.

Le quatrième article de la thèse [4] propose une méthodologie à base de modélisation des réseaux

pour produire des simulations illustrant cet aspect réseau négligé. L'article est présenté de manière

abstraite. Trois arguments nous ont conduit à faire ce choix. Le premier tient à la nature des données

utilisées pour les simulations. La précision des données indiquant les flux transfrontaliers des CSDs

s'étant révélée insuffisante, présenter des simulations chiffrées pourrait conduire à des interprétations

erronées, surtout lorsque l'on inclut le risque de modélisation. Le second argument relève de la

confidentialité de ces informations. Le troisième argument est que la méthodologie utilisée pourrait

potentiellement s'appliquer à d'autres domaines. Ainsi notre article se présente comme un article de

méthodologie pure, se focalisant sur la modélisation de l'effet réseau en général. Economides

(Economides, The economics of networks, 1996) présente une description abstraite générale de l'effet

de réseau en organisation industrielle, de même que les articles de Economides et Salop (Economides

& C., Competition and integration among complements and network market structure, 1992), et de

Park et Ahan (Park & Ahn, 1999) qui traitent de l'inter connectivité de deux réseaux du point de vue

de l'établissement d'un prix d'équilibre. Une introduction informelle aux effets de réseaux dans

l'industrie des services post-négociations peut se trouver chez Knieps (Knieps, 2006). Jusqu'à présent,

la littérature concernant l'industrie des services post-négociation s'est contentée d'emprunter les

techniques de modélisation de l'effet réseau à l'organisation industrielle, qui suppose une forme a

priori de l'utilité marginale dérivée de la participation d'un membre de plus au réseau. Ainsi, cette

utilité n'est pas dérivée du modèle. Dans notre approche au contraire, nous donnons un fondement

micro-économique à la forme de l'utilité de l'effet de réseau dérivée, car nous modélisons

explicitement le réseau. Pour des réseaux réels cependant, dénués des formes de symétrie supposées

dans l'article, recourir à des simulations de Monte-Carlo serait nécessaire. L'article se rattache aussi à

la littérature des réseaux économiques, car il tente, dans une seconde partie, de caractériser les réseaux

stables et les équilibres de Nash sur des réseaux dérivés de la première partie. La littérature des

réseaux économiques a été appliquée avec succès à des cas aussi divers que l'étude de la transmission

sociale des opportunités d'emploi (Calvo-Armengol et Jackson (Calvo-Armengol & Jackson, 2004)),

la conclusion des accords de libre-échange (Goyal & Joshi, 2003), les liens de co-auteurs (Jackson &

14
Ces économies tiennent au fait qu'un seul compte d'actifs permettra de contenir le collatéral nécessaire pour

les prêts en monnaie centrale nécessaire au règlement cash de la transaction.
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Wolinsky, 1996). De plus ce courant de la littérature économique contient de nombreux articles

formulés de manière abstraite et à même de s'appliquer à plusieurs situations (voir principalement:

Bala et Goyal (Bala & S., 2000), Belleflamme et Bloch (Belleflamme & Bloch, 2004), Dutta et al.

(Dutta, Ghosal, & Ray, 2004), Goyal et Vega-Redondo (V. & Goyal, 2000), ainsi que Jackson

(Jackson M. , A strategic model of social and economic networks, 1996), (Jackson M. , The evolution

of social and economic networks, 2002)). A notre connaissance aucun de ces modèles n'a encore été

formulé dans l'objectif de modéliser l'industrie du règlement. C'est un fait d'autant plus étonnant que le

vocabulaire même des utilisateurs suggère une telle application (le vocable de « lien », ou « link » en

Anglais, couramment utilisée par les participants de l'industrie dans le contexte des règlements

transfrontaliers, et aussi le terme générique employé par les théoriciens de la littérature de réseau pour

désigner une arête orienté d'un graphe). En outre, les règles de partage des profits au long d'une chaîne

d'intermédiaires proposées dans l'article n'ont pas été étudiées à notre connaissance, même de façon

purement théorique. La question de détermination de la totalité des équilibres de Nash, ou même des

réseaux stables, reste à ce jour encore ouverte.

2.2 Résumés détaillés des articles

Article [3] : Optimal CSD reshaping towards T2S

Les CSDs ont besoin de réorganiser leur achitecture actuelle afin d'accéder à T2S. Cette adaptation à

T2S demande des investissements, souvent conséquents, de leur part. En pratique il existe une infinité

de stratégies possibles entre les deux approches extrêmes suivantes. Dans la première approche le

CSD cherche à minimiser ses coûts d'adaptation au maximum en ne s'adaptant que le minimum requis

pour se connecter à T2S. C'est la "T2S-fees-on-top approach". Le CSD garde simplement son

architecture IT actuelle et construit une interface pour dialoguer avec T2S. En particulier, le CSD

devra répliquer chaque message, donnée, etc. provenant de T2S dans son propre langage avant de

pouvoir traiter l'information et d'offrir ses services spécifiques. Une telle approche ne permet pas

d'obtenir des réductions de coûts au niveau du traitement de chaque instruction individuelle. Au

contraire, les frais opérationnels de T2S doivent être ajoutés aux coûts du CSD. Cette approche permet

cependant de contenir les coûts d'adaptation immédiats au maximum. Dans la seconde approche

extrême, le CSD adopte une "green field approach" dans laquelle il établit une architecture IT

entièrement nouvelle et prévue pour fonctionner avec le plus de synergies possible avec T2S. Dans ce

cas, le CSD minimisera ses coûts de traitement des transactions individuelles, mais devra faire face à

des coûts d'adaptations importants.

Les CSDs Européens font face à une décision cruciale: comme la participation à T2S est volontaire,

doivent-ils joindre T2S? Et, pour ceux qui décident de joindre le réseau, quel est le degré optimal

d'adaptation à la plateforme? C'est-à-dire quel degré de réorganisation de leur architecture IT, mais

aussi de leurs ressources humaines et de leur business modèle est le plus souhaitable? En particulier,

les CSDs doivent décider du prix optimal de leurs services dans le nouveau contexte européen. Par

exemple, certains seraient tentés d'augmenter leur prix pour faire face aux coûts d'adaptation,

transférant ainsi lesdits coûts à leurs clients.
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L’objectif de l’article est d’apporter des éléments de réponses à ces questions cruciales en modélisant

la décision des CSDs de s’adapter à T2S dans le cadre de la théorie des jeux. Deux types de jeux sont

utilisés : un jeu fini et un jeu infiniment répété, dans lequel la décision du degré d'adaptation dépend à

la fois des coûts fixes d'adaptation, irréversibles, et de la future rentabilité, qui est fonction de la

réduction des coûts de traitement des transactions mais aussi du potentiel accroissement des volumes

pouvant être obtenu en réduisant les prix, la demande étant supposée partiellement élastique. On

suppose, dans la première partie de l'article, un jeu fini avec une décision de s'adapter qui ne peut être

prise qu'au début du jeu. Le résultat est que les CSDs ne doivent pas augmenter leurs prix mais au

contraire les diminuer en fonction de la réduction des coûts de transaction obtenue. On dérive ensuite

une formule analytique close qui donne le degré d'adaptation optimal en fonction des paramètres du

modèle, en particulier les coûts de transactions et la quantification de l'effet de substitution entre les

services offerts par les différents CSDs. Des simulations sont produites à l'aide de données publiques.

Dans la seconde partie de l'article, on considère un jeu infini et on permet aux CSDs de s'adapter à

n'importe quel moment du jeu. Cela introduit un comportement stratégique de la part des CSDs,

puisque cela leur permet d'établir des stratégies qui dépendent des stratégies d'autres joueurs. Un

important résultat de l'article est la dérivation de conditions suffisantes sous lesquelles un équilibre de

Nash en sous-jeux parfait existe dans lequel les CSDs délaient sans cesse leur décision de s'adapter.

Cependant cet équilibre semble peu robuste, en particulier si l'on considère la possibilité de nouveaux

venus sur le marché. En outre la condition s'avère être aussi nécessaire. Ainsi, on obtient une condition

sous laquelle il ne peut y avoir de délai à la décision des CSDs de s'adapter. Les résultats sont robustes

vis-à-vis de plusieurs modifications du modèle (délai dans l'observabilité de la décision de s'adapter

des autres CSDs, généralisation à un nombre quelconque de CSDs, etc.). On montre également

comment une simple translation d'un des paramètres permet d'appliquer notre modèle à la décision

simultanée de joindre et de s'adapter à T2S.

Article [4] : Endogenizing the network e ect: how Monte-Carlo simulations and Graph Theory

could benefit economic modelling

Cet article apporte trois principales contributions à la modélisation des effets de réseau. La première

est la dérivation d'une forme de l'utilité de l'effet de réseau à partir de fondements microéconomiques:

l'effet de réseau est endogène au modèle, et l'on n'a donc pas besoin d'en spécifier une forme

particulière ex-ante. L'effet réseau sur la fonction d'utilité des agents est entièrement déterminé par le

nombre de participants, les hypothèses de coûts et de profits, et la structure du marché
15

.

La seconde contribution principale de l'article est d'illustrer le problème de coordination des agents

pour joindre un nouveau réseau, problème dont la solution optimale tout comme les équilibres de Nash

dépendent des coûts opérationnels du nouveau réseau, des coûts individuels de transaction des agents,

de leur coût d'adaptation au nouveau réseau, ainsi que de la croyance a priori de chaque agent sur les

décisions des autres agents de joindre ou non le réseau. Les conséquences en termes de politique

économique sont, tout d’abord, qu’une transparence accrue sur les coûts d’adaptation de chaque agent

ainsi que sur les coûts de la plateforme, mais aussi sur les décisions des agents de la joindre, facilite la

15
Bien sûr, une fois les effets de réseaux dérivés du modèle, ils peuvent être utilisés pour ajouter une autre

"couche" de modélisation, et c'est précisément ce qui est fait pour endogénéiser la décision des agents de

joindre ou non le réseau à l'aide d'outils de la théorie des jeux, ou encore pour l'étude des équilibres de Nash

et de la stabilité de réseaux.
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détermination de l'équilibre et son orientation vers un équilibre efficient. En outre, il peut être

nécessaire pour un sous-ensemble d'agents de synchroniser leur entrée dans le réseau: cela dépend de

la distribution jointe de leurs coûts individuels.

La troisième contribution principale de l'article est plus académique et concerne la détermination de

réseaux stables pour un jeu basé sur une règle de partage simple des profits. La modélisation de

chaînes d'intermédiaires introduit des considérations d'ordre topologique complexes, et par conséquent

déterminer l'ensemble des réseaux stables dans les cas non-triviaux reste un problème ouvert. Par

exemple, un agent peut être amené à détruire un lien avec un intermédiaire A qui lui était profitable car

il lui permettait d'accéder à un second agent B qui était relié à de nombreux autres agents dans le but

de se lier directement à B ou à un autre agent remplissant cette même fonction. La question de savoir

si l'agrégation de plusieurs réseaux efficients donne un réseau efficient est aussi étudiée. La réponse

est que laisser aux agents le soin de réorganiser le réseau ne permet pas nécessairement la mise en

place d'un réseau global efficient, en particulier si les agents cherchent à conserver les liens déjà

établis de manière domestique.

Thème 3 : les modèles de défauts

3.1 Contexte et motivation

La crise économique a considérablement augmenté la probabilité de défaut des entreprises tout

comme des particuliers. Le risque de crédit est donc à nouveau un facteur essentiel dans l'évaluation

des actifs par les acteurs de marché. En outre, le secteur privé n’est pas le seul secteur exposé au risque

de crédit : l’Eurosystème, parce qu’il prend des instruments financiers en collatéral des prêts qu’il

accorde aux banques commerciales, est aussi exposé a des pertes en cas de double défaut, c'est-à-dire

dans le cas ou à la fois une banque et son collatéral ferait défaut. De plus, lors d’achats de titres

adossés à des prêts à l’économie réelle, l’Eurosystème serait cette fois directement exposé au risque de

crédit. Les modèles de default s’avèrent alors nécessaires pour que les prêteurs puissent mesurer le

risque du collatéral reçu, ou pour évaluer le risque associé à des achats directs. De même, du point de

vue des régulateurs cette fois, les modèles de défaut sont nécessaires dans le cadre des normes de

solvabilité bancaire afin de déterminer les capitaux requis. La réglementation en vigueur de Bâle II,

dans son approche avancée, et ses révisions successives ou futures, utilisent en effet un modèle de

défaut. On le voit, l’estimation des risques de défaut est une problématique cruciale qui concerne

autant le secteur privé, désireux d’optimiser son capital risque et ses décisions d’investissement, que le

secteur public, autorités monétaires et régulateurs inclus. Il est donc utile de se demander quels sont

les principaux modèles de défaut qui permettent de quantifier le risque de crédit utilisés, et leurs

limitations potentielles.

La première difficulté dans la prévision des défauts est souvent le manque de données pour calibrer de

tels modèles. Les défauts sont souvent des évènements rares, en tout cas pour les firmes d’une certaine

qualité minimale de crédit. Cela explique que la plupart des modèles de défaut couramment employés,

que ce soit pour le pricing des Collateralised Debt Securities (CDO), pour le stress-testing des Asset

Backed Securities (ABS) par les agences de notations, ou encore pour le calcul des règles de capital

des banques, forment en réalité une seule et même famille de modèles dérivés du modèle de Merton

(Merton, 1974), qui s'insère dans le cadre théorique du pricing d'option à la Black et Sholes. On y
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suppose simplement que la firme fait défaut lorsque le processus qui décrit sa valeur intrinsèque tombe

en-dessous du niveau de la dette à rembourser.

Une approche différente, et plus macroéconomique, consiste à tenter d’expliquer les séries de défauts

par l’ajout de variables macroéconomiques. Deux obstacles doivent être surmontés : la disponibilité de

séries suffisamment longues et représentatives de l’économie, d’une part, et le problème du choix des

variables macroéconomiques d’autre part.

Récemment Giampeieri et al (Giampieri, Davis, & Crowder, 2005) ont obtenu de Standard and Poor’s

des séries de défauts concernant les obligations d'entreprises étatsuniennes suffisamment longues pour

appliquer une telle approche. Parce que les cycles économiques, tels que mesurés par le PIB par

exemple, ne s’avèrent pas correspondre aux cycles de crédits observés, les auteurs ont appliqué une

technique empruntée à la reconnaissance de langages (Rabiner, 1989) pour estimer, sans faire aucun

choix de variables macroéconomiques, les cycles de crédits : les chaînes de Markov cachées.

Le dernier article de la thèse a pour objectif d’appliquer cette méthodologie dans un contexte

Européen. La première difficulté a été d’obtenir des séries de défauts suffisamment longues pour

divers secteurs européens. Les agences de notation ne sont pas très coopératives à ce sujet, car leurs

séries sont des données confidentielles d’où elles tirent précisément leur avantage stratégique par

rapport aux nouveaux entrants potentiels dans leur secteur plutôt fermé. La deuxième étape consiste à

implémenter de manière efficace, en évitant les problèmes typiques de sous-flots dans l’estimation des

probabilités de défauts conditionnelles, des algorithmes capables d’estimer les cycles cachés de

l’économie en termes de risque de crédit. Ces algorithmes nous ont permis d’identifier le cycle de

crédit de l’économie à partir de deux types de données observées : la série de taux de défaut des

entreprises européennes obtenue de Moody’s d’une part et un taux de défaut générique des PME

espagnoles calculé à partir de données provenant de Bloomberg d’autre part.

3.2 Résumé détaillé de l’article

Article [5] : The modelling of default rates through hidden Markov chains models

L'article présente les principaux modèles de défaut ainsi que leur utilisation dans le cadre de

l'Eurosystème, avec un focus particulier sur les portefeuilles de titres de crédits.

La première partie de l'article présente les modèles communément utilisés, de manière auto-suffisante

et avec des notations homogènes, établissant les liens entre les différents modèles. On y montre qu'une

grande famille de modèles structurels de défauts provient en réalité d’un même modèle originel

proposé par Merton (Merton, 1974), et donc que le risque modèle est concentré : une seule et unique

grande famille de modèle est utilisée et l’on manque de modèles alternatifs pour confirmer ou

invalider ces modèles. L’article utilise des notations homogènes afin de faciliter la compréhension des

liens entre modèles, et pointe leurs principaux atouts et défauts.

La seconde partie de l’article propose un modèle original fondé sur des estimations à base de chaînes

de Markov cachées afin de déterminer le cycle de crédit de certains actifs (obligations d’entreprises ou

prêts aux PME) en Europe. Des algorithmes efficients sont décrits dans l’article. Implémentés en

Matlab, ils sont utilisés afin d’estimer l’état de crédit de l’économie (haut risque / bas risque)
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indépendamment des variables macroéconomiques utilisées généralement pour prédire les cycles de

l’économie (PIB, etc.). Le modèle est d’abord appliqué sur des données générées suivant les

hypothèses du modèle à titre d’illustration. Puis, des données observées sont mobilisées, d’une part la

série de taux de défaut des entreprises européennes obtenue de Moody’s et d’autre part, un taux de

défaut générique des PME espagnoles calculé à partir des données de défauts de Bloomberg relatives

prêts aux PME espagnoles qui forment le portefeuille sous-jacent des Asset Backed Securities (ABS)

éligibles comme collatéral pour les opérations monétaires de l’Eurosystème. L’état du cycle de crédit

de l’économie est ainsi identifié.

Conclusion générale

En conclusion, cette thèse offre l'intérêt d'étudier plusieurs problématiques centrales et actuelles de

la finance moderne : la rationalité limitée des agents et leurs biais comportementaux vis-à-vis des

valeurs nominales, le problème de la juste évaluation du prix des actions, la refonte du paysage de

l'industrie post-négociation en Europe suite à l'introduction du projet de l'Eurosystème Target-2

Securities, ainsi que les modèles de défaut et les méthodes d’estimation des cycles de défaut  pour un

secteur donné. Si les thèmes sont variés, les techniques à la fois théoriques et appliquées le sont aussi,

illustrant la capacité sans cesse renouvelée des sciences économiques à mobiliser des méthodes

relevant d’une pluralité d’approches et de domaines: enquêtes sur données individuelles, économétrie,

théorie des jeux, théorie des graphes, simulations de Monte-Carlo, chaînes de Markov cachées...

Notre enquête sur l’illusion monétaire confirme la robustesse des résultats d’études précédentes tout

en dévoilant de nouvelles perspectives de recherche, par exemple tenter d’expliquer la disparité des

réponses selon les caractéristiques individuelles des répondants, en particulier leur formation

universitaire. Réitérer l’étude sur un échantillon d’étudiants de même niveau, mais provenant de pays

dotés d’une culture distincte de l’inflation, pourrait mettre en exergue d’éventuelles différences

culturelles liées à la perception de l’inflation. Notre étude du modèle de la Fed montre que la relation

de long terme entre taux nominal des obligations d’Etat et rendement des actions n’est ni robuste, ni

utile à la prédiction sur des horizons temporels réduits. Néanmoins, tester le modèle en incluant

explicitement d’autres variables, de nature macro-économique afin de capturer les tendances et

potentiellement les ruptures structurelles, est une voie encore ouverte à la recherche. Enfin, le modèle

d’estimation des défauts à partir de chaînes de Markov cachées gagnerait à être appliqué sur des

portefeuilles comprenant moins de titres, mais dont les titres sont plus risqués, afin de juger de sa

pertinence dans ce cadre plus difficile pour les prédictions.
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Article 1: Money-illusion at individual level: French evidence
1

1. Introduction

Rational well-informed agents are supposed to be able to appropriately take inflation into account in

their decision-making process as well as in exercising their judgment on the economic situations they

are faced with. However, the difficulties people experience in distinguishing clearly nominal from real

quantities have been recognized since a long time. Irving Fisher was the first to consider that money

illusion – “the tendency of people to think of money in nominal, rather than real terms”– was a

widespread phenomenon, and an illusion on which people acted upon, with dire economic

consequences. He even wrote an entire book (Fisher, 1928) to make the public aware of the difference

between nominal and real price. He reported, for example, his talk with a shop tender in Germany who

refused to increase the price of the product he was re-selling because he had brought it at a lower price

and would consider it unfair to make such a profit, thereby jeopardizing his ability to renew his stock

in the future – since the price he himself pays for it had increased. Fisher’s main goal was to make

both the public and the authorities aware of the great damages that can cause an unstable currency

given the prevalence of money illusion. However, money illusion seemed probably so obvious to

Fisher that he did not carry out any quantitative study to prove its existence, preferring to prone, with a

clear practical goal in mind, more stability in the purchasing power of the currency.

Keynes (1936) considered more generally that money illusion occurs when “individuals do not

accurately take inflation into account” and might partly explain the downward stickiness in nominal

wages. Commonly used in macroeconomics for many years, money illusion became since the end of

the sixties an hypothesis largely abandoned, probably more for normative reasons – the large

consensus on the economic rationality model – than for positive ones. If people are assumed to be

rational, they should care only about real magnitudes and real changes; hence they are free from

money illusion.

The interest in money illusion was renewed from an empirical standpoint and largely grew out of the

influence of experimental psychology applied to economics following Tversky and Kahneman,

1
This paper has been co-written with Marianne Guille (Université Panthéon-Assas, LEMMA (EA 4442),

guille@u-paris2.fr) ; the authors would like to thank Anna Bernard for her precious help in organising the

experimental sessions and Anne Corcos for her comments on earlier version of this article.
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(Tversky & Kahneman, 1981), which focuses on the different biases separating agents from the homo

economicus model.

The first type of empirical evidence came from large qualitative surveys on wages and prices which

show that money illusion can partly explain their nominal stickiness.
2

But, Shafir, Diamond and

Tversky (1997) carried out the first extensive survey at the individual level focused on money illusion.

Their survey is based on a questionnaire which was completed by several groups of about 100 to 300

respondents in different places: Two New Jersey shopping malls, the Newark Airport and, finally, at

Princeton University - the respondents being undergraduate students. The results were presented in an

aggregated form since the authors did not find any important difference between the respondent

groups. They show that a majority of respondents think in nominal, rather than real, terms, when asked

to compare certain situations in various contexts covering wages, transactions and contracts.

Moreover, most of them expect that other people would also be subject to money illusion. The authors

analyze this strong money illusion effect as a framing effect reflecting agents’ preference for the

nominal framework given its salience and easiness to process, even though agents may use the real

one or a mix of both as well. They consider that the favored cognitive framework may vary depending

on the context and the decision-maker’s experience, for instance agents are more likely to use the real

one during periods of hyperinflation.

The relevance of money illusion was further supported by different type of studies. A first type of

studies show that a pure nominal shock as for instance the changeover to the euro in January 2002

triggered significant real effects.
3

Another one support the Modigliani and Cohn (1979) hypothesis

that even stock market investors seem to suffer from a particular form of money illusion, discounting

real cash flows at nominal discount rates.
4

Finally, money illusion bias at the individual level is

supported by experimental studies, including notably Fehr and Tyran (2001, 2007, 2008) price-setting

game experiments. They show that most subjects are sensitive to money illusion once they are shown

gains expressed in nominal, rather than real, terms; a bias that has powerful effects on equilibrium

selection or may cause aggregate nominal inertia. Another sort of evidence is provided by some

neuroeconomic studies based on much more simplified experimental-task (see Weber, 2009 and

Miyapuram, Tobler, Gregorios-Pippas, & Schultz, 2009). They use advanced techniques of brain

imagery to observe the cerebral mechanisms potentially involved in money illusion as expressed by

individuals. Their results support the existence of money illusion at the infra-individual level since

they identify a specific impact of nominal changes on the reward circuit.

2
Cf. Kahneman, Knetsch and Thaler (1986), Blinder and Choi (1990) or Blinder (1994).

3
Cf. Kooreman, Faber and Hofmans (2004), Cannon, E. and Cipriani (2006).

4
See Campbell and Vuolteenaho (2003), Cohen, Polk and Vuolteenaho (2005) or Boucher (2006).
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These findings support the hypothesis of a phenomenon very deeply rooted in human nature, to an

extent which was not suspected before (Bourgeois-Gironde & Guille, 2012). However, the precise

nature of this bias at the individual level requires further investigation. One of the questions that

remain largely unexplored is whether there is an impact of education on money illusion. In particular,

is there a learning effect associated to an economics training, since it implies that people have been

trained to think in real terms, or to some other particular training? If the answer is affirmative, then a

specific program of education could be a means of reducing the prevalence of money illusion in the

population, hence increasing the efficiency of markets. If the answer is negative, that is, if there is no

or few learning effect linked to a particular training, especially in economics, then a specific program

of education could not be sufficient to reduce the degree of money illusion in the population.

Governments should also implement measures encouraging people to take into account the real

framework, especially in periods of high inflation. Such measures are rare. A notable exception is the

creation of an indexed unit of account, the Unidad de Fomento (UF), by the Chile in 1980. Defined as

the amount of pesos needed to buy the cost of a living bundle, the UF is used to state future payments

on forward contracts: They are paid in pesos depending on the UF’s value which is published daily.

Other measures that could be considered include the creation of markets to hedge inflation risk, such

as the European inflation futures market at the Chicago Mercantile Exchange (HICP), as

recommended by Shiller, or the adoption of mandatory revaluation measures, such as those that cover

rents or child support payments in some countries.

This question was addressed by Cipriani, Lubian and Zago (2008) who carried out a survey among

Italian undergraduate students from several backgrounds. Their questionnaire was reduced to a

question taken from Kahneman, Knetsch and Thaler (1986) about the fairness of a limited adjustment

of nominal wages on prices presented in two versions, in case of inflation and deflation, the two

versions being identical in real terms. The proportions of first-year students in economics and

mathematics judging the (same) real wage cut unfair were identical in the two versions contrary to the

results obtained for other students (law, tourism and foreign languages). Hence, the authors consider

that first-year students in economics and mathematics were less likely affected by money illusion than

other students. Since these differences were identified from the very beginning of their training and

because third-year students in economics were as much affected by money illusion than first year

ones, the authors conclude that their findings suggest there is a selection bias – as if the most rational

people are drawn to economics or mathematics - rather than a learning effect – a training of two years

in economics does not allow to reduce the degree of money illusion.

This article aims to study more precisely the potential impact of different academic trainings on

money illusion. To that end, a large questionnaire, close to that of Shafir, Diamond and Tversky

(1997), was administered to more advanced students from several backgrounds. All participants are
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French graduate students either enrolled in a Master or having a Master degree in economics, in

science or in law or humanities. We try to limit some of the biases typically associated to survey-based

studies. First, the questionnaire was completed by participants on computer within an experimental

framework to control their information and ensure independent answers. Second, to reduce as far as

possible the interpretation biases that might introduce errors in subject responses, questions and their

context were formulated in clear and explicit terms, in particular the elements useful to give a rational

answer were provided to minimize personal views or speculation. Third, individual characteristics

were collected to test a possible interaction with money illusion. Hence, participants filled up several

questionnaires in addition to that on money illusion, probing usual individual variables as well as their

risk aversion, nominal loss aversion and financial literacy skills.

The next section presents the survey and sample characteristics. Section 3 explains the money illusion

survey and results obtained. Finally, the last section provides some concluding remarks.

2. Survey design and sample characteristics

The survey was administered to 106 participants (56 females and 50 males) at LEEP (the

Experimental Economics Laboratory of Paris) in May 2012. Participants were aged 23 on average. All

of them were graduate students either enrolled in a Master or having a Master degree in economics

(42), science (42) or in law or humanities (22). We control for previous exposure to economics by

asking the non-economics students   to mention any economics or finance training.

Type of education: male Female total

Science 17 25 42

Economics 21 21 42

Law and literature 12 10 22

total 50 56 106

The survey was anonymous and all students were told that there were no right or wrong answers and

that they will receive a fixed amount of money (5 euros) for their participation.

Before the questionnaire on money illusion, participants filled up three questionnaires aimed to collect

individual characteristics that could interact with money illusion. The first one probes usual individual

variables such as sex, age and education as well as a brief measure of the Big-Five personality

domains. The second questionnaire aims to provide a rapid test of their financial literacy skills. The

last one consists in a usual Holt-Laury risk aversion measure procedure (Holt & Laury, 2002).  At the

end of the questionnaire on money illusion, three questions were added to test their nominal loss

aversion.
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Financial literacy

Wording

The following two simple questions were asked, testing the understanding of interest compounding, a

basic financial concept, with serious implications for usual decisions as savings or retirement

planning.

Question 1. Suppose you placed 1000 euros on a saving account which provides a return of 2% per

year. After one year, how much will you have on this saving account if you did not made any

withdrawal nor added any money to it?

Less than 1020 euros

Exactly 1020 euros

More than 120 euros

Don’t know

Question 2. After 5 years, how much will you hold on this saving account if you have not added or

withdrawn any money?

Less than 1100 euros

Exactly 1100 euros

More than 1100 euros

Don’t know

Categories used in the study

A financial literacy score of 0 was given to all respondent having failed both financial literacy

questions (32%) and a score of 1 to those having answered correctly both questions (68%). This

allows creating two groups of comparable size to distinguish between financially literate subjects and

financially illiterate ones.
5

Results

Results show that although neither education nor sex has any significant impact on the number of

correct answers for the relatively simple first question
6
, both education and sex have an impact on the

number of correct answers for the second question since students in science and economics gave the

best answers, and male underperformed females.

Answer given to Question 2: Less than

1100 euros

Exactly
1100 euros

More than
1100 euros

Don’t know

Science 2% 17% 81% 0%

5
Only 5% of respondent failed to correctly answer Question 1.

6
Results can be obtained from the authors on demand.
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Economist education 5% 12% 83% 0%

Law and literature 0% 50% 45% 5%

Average 3% 23% 79% 1%

Fischer7 exact test p-value: 0.002

Fischer exact test indicates a very low p-value of 0.002, hence the differences are highly significant.

Answer given to Question 2: Less than

1100 euros

Exactly

1100 euros

More than

1100 euros

Don’t know

male 0% 30% 68% 2%

female 5% 14% 80% 0%

Average 3% 22% 75% 1%

Fischer exact test p-value: 0.032

Risk aversion

Wording

To measure subjects’ risk aversion and study its potential interaction with money illusion, we use the

usual lottery-choice method of Holt and Laury (Holt & Laury, 2002), presented in the table below.

Question

number:

Scenario A Scenario B

probability to win 2

euros

probability to win 1.60

euro

probability to win 3.85

euro

probability to win 0.10

euro

1 10% 90% 10% 90%

2 20% 80% 20% 80%

3 30% 70% 30% 70%

.. .. .. .. ..

9 90% 10% 90% 10%

10 100% 0% 100% 0%

7
We use Fisher's exact test to test significant differences in answers because it does not require any

assumption on the expected frequency of each cell and computes the p-value directly.
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Scenarios A as well as Scenario B can have two different realizations with varying probabilities over

the 10 choices presented. The later individuals switch from scenario A to scenario B, the higher their

risk-aversion.

Categories used in the study

Based on the Holt and Laury (Holt & Laury, 2002) survey it is possible to classify subjects into two

groups: the low risk-averse subjects turned to Option B before scenario 4 (50%) and the high risk-

averse subjects at scenario 5 or after (50%).

Results

The table below indicates the results split off of the sample.

Question at which

subject switch to

Scenario B as

preferred scenario:

0 1 2 3 4 5 6 7 8 9 10

Percentage of subjects 3.77 0.94 4.72 19.81 20.75 17.92 17.92 7.55 4.72 0.94 0.94

Results show that neither education nor sex has any significant impact on the degree of risk aversion

which is captured by the scenario in which respondents start to prefer the riskier Scenario, Scenario B,

to the other, Scenario A.

Nominal loss aversion

Wording

The questions were as follows.

Question 1. Suppose you are participating in a game in which you start by receiving 100 euros and

then can choose between two options:

Option A: You keep 75 euros.

Option B: You have 25% chance to keep 100 euros and 75% chance to lose 100 euros.

Question 2. Suppose you are participating in a game in which you start by receiving 100 euros and

then can choose between two options:

Option C: You lose 25 euros.

Option D: You have 75% chance to lose 100 euros and 25% chance to keep 100 euros.

Question 3. Suppose you have the choice between the two following scenarios:
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Scenario E: You have 200 euros and have 50% chance to win 100 euros more and 50% chance to lose

100 euros.

Scenario F: You have 100 euros and have 50% chance to win 200 euros more and 50% chance to win

nothing more and keep your 100 euros.

Which of the two scenarios would you rather be in?

Categories used in the study

Subjects were considered to exhibit a strong nominal loss aversion whenever they chose the riskier,

lower return option to avoid a sure nominal loss in the second question of the nominal loss aversion

part of the survey. The score assigned to such subjects (18%) was 2. Question 3 was taken into

consideration differently, as it provides evidence of nominal loss aversion but to a much lower degree,

the two described situation being identical. The score assigned to subject preferring Scenario F of

Question 3, and being not considered as subject to strong loss aversion (56%), was 1. Subjects which

were not assigned a score of 1 or of 2 (26%) where considered exhibiting no nominal loss aversion and

consequently assigned a score of 0.

Results

Question 1 and Question 2 are phrased such as to have exactly the same payoff for option A and

option C, on one hand, and option B and option D, on the other hand. Option B and D have lower

expected payoffs than Option A and C, and are more risky. Unsurprisingly, most subjects (95.3%)

preferred option A to option B in Question 1. Nevertheless, in Question 2, only 82% of subjects still

prefer option C. The only explanation is the framing of Question 2, which explicitly mentions the

nominal loss (you lose 25 euros), contrary to identical Question 1 which mentions the remaining

nominal gain (you keep 75 euros). Nominal loss aversion triggered a more risky behavior from some

subjects: To avoid the perceived loss, they chose the more risky option despite of its lower expected

payoff.

Sex is a completely irrelevant explanatory variable for that behavior (Fisher test p-value of 0.80)

contrary to education, which is almost significant at the 10% level. Surprisingly economics and

science students exhibit the less rationale behavior since they have a different behavior in both

questions and considering that they were no differences between question 1 answers across groups of

students.

Answer given to first question: Option A Option B

Science 95% 5%

Economics 95% 5%

Law and literature 95% 5%

Average 95% 5%
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Fischer exact test p-value: 1.000

Answer given to second question: Option C Option D

Science 83% 17%

Economics 74% 26%

Law and literature 95% 5%

Average 82% 18%

Fischer exact test p-value: 0.103

Among the three groups only the literature and law group answers remain unchanged from Question 1

to Question 2. There is no significant difference in the answers to Question 3 regarding education and

sex.

Answer given to Question 3: Option E Option F

Science 31% 69%

Economics 29% 71%

Law and literature 50% 50%

Average 34% 66%

Fischer exact test p-value: 0.231

3. Money illusion survey and results

The questionnaire on money illusion is based on that of Shafir, Diamond and Tversky (1997) but some

questions and/or their context are formulated in a more explicit way to minimize personal asumptions

that could biase the answers of respondents who are asked to compare and judge different hypothetical

situations i.e. scenarios rather than the situation of different persons. The questionnaire includes 12

questions which have been presented to participants in the following order.

Question 1

This question aims to test if subjects are able to compare in economic terms real vs. nominal wage

increase in two situations characterized by different inflation rates.

Wording

Julie has graduated from University. Like all other students, she has neither savings nor debt. Her

diploma will allow her to get the job she wants. She does not plan to make any savings nor to take on
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any debt in the first five years of her working life, meaning she will use, each month,  all her monthly

pay to buy consumer goods but will not go into debt. All the other students have similar plans. We are

concerned exclusively with these five first years. There are two different scenarios that could occur; in

each one the inflation rate is perfectly known to Julie and to all other people in the economy, and at the

beginning of each year. Also, Julie buys goods whose price increases/decreases are perfectly

represented by the inflation rate. After these first five years, there will be no more inflation or pay

increase in the economy.

Scenario A: Julie is offered a job that pays EUR 20000 annually, and the economy is under a stable,

constant and known in advance annual inflation rate of 4% for all countries during the whole five

years period. Julie gets a pay-increase each year, the trajectory of her salary being:

Year 1 2 3 4 5

Julie salary : 20000 euros 21000 euros 22050 euros 23152 euros 24310 euros

That is, her salary increases of 5% each year.

Scenario B: A: Julie is offered a job that pays EUR 20000 annually, and the economy is under a stable,

constant and known in advance inflation rate of 1% for all countries. Julie gets a pay-increase each

year, the trajectory of his salary being:

Year 1 2 3 4 5

Julie salary : 20000 euros 20400 euros 20808 euros 21224 euros 21648 euros

That is, her salary increases of 2% each year.

In your opinion, what do you think would be the best scenario in economic terms?

Scenario A Scenario B Both

Before analyzing the results, it is useful to review the four main considerations that led to the precise

wording of Question 1.

First, it seems useful to state explicitly Julie possible prior savings or debt, since a higher inflation

clearly benefits debt holders. In Shafir et al. previous study (Shafir, Diamond, & Tversky, 1997), the

respondents could guess or imagine this part of the problem, which can lead, particularly in a country

like the United States where many students contract student loans, to an overstatement of the real

extend of money illusion in the respondents’ minds.

Second, it seems also useful to be precise with Julie’s plans for savings or debt. It is very possible

that savings are made more difficult in an inflationary environment than in a stable price environment

due to the lack or inaccessibility of proper hedging instruments. Debt could potentially be less
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expensive in a higher inflation environment if the lender failed to properly predict the future inflation

rate to adjust the required nominal rate of interest. In the question Julie’s plans for the five year period

ahead are made as simple as possible: Julie will not save nor contract debt. Hence no freedom of

interpretation that could interfere with our measure of money illusion is left to the respondents.

Third, the phrasing of the question avoids comparing the situations of two different people, as in

Shafir et al, in order not to favor some interregional arbitrage in respondents’ mind. Indeed, if

someone has a better pay, in nominal terms, in some region, he or she might take advantage of the

lower inflation rate in another region to buy goods or services from there. Hence an inflationary

environment can seem more attractive to respondents, whatever their money illusion. Another

detrimental effect of framing the problem with two different people instead of using different

scenarios is that it prompts interpersonal comparisons in a way that may capture some other part of

human psychology independently of money illusion, for instance nominal comparisons between

salaries may flatter one’s ego relative to others. Indeed, empirically it is true that the most

prestigious places to live are also the most expensive. Although the real salary may be the same, the

person having the higher nominal salary thus may feel superior (even if not geographically mobile).

Hence, the wording is such as to avoid any social consideration based on nominal earnings, and uses

the concept of “Scenario”. This implies different possible universes for the same person instead of

referring to comparisons between individuals living in the same universe, which could provoke

unwanted inter-individual comparisons. To avoid individual comparisons the question also mentions

that other students do not have any savings or debt. We also stated other students have similar plans

than Julie, such that no comparative advantage exists between Julie and the others
8
.

Fourth, the question assumes that the inflation rate is both representative and an accurate measure of

the cost of living. The relative high pay of Julie might otherwise lead respondents to believe he buys

goods which differ, in their price increases, from those used in the basket of goods used to compute

inflation. This is relevant in the context of our current economic situation where food prices are more

volatile than technological products while making a larger relative share of modest households

expenditures compared to above-the-average-earnings households. Similarly it is important that

respondent knows that the inflation rate is known to Julie and the other students, such that they do not

imagine they could have been fooled in a way or another by different than expected inflation when

choosing the goods they buy and consume
9
.

Results

Since both scenarios are approximately equivalent in real terms (+ 1% real wage growth per year)

while a precise calculation indicates a small advantage in the scenario B (+1.0099 vs. +1.0096), the

results suggest that only about one third of the subjects, those who have chosen the high inflation

scenario (A), can be considered as exhibiting money illusion. Therefore, almost half of the subjects

8
If not, it could have been argued, for example, that Julie, who is more inclined to consume than to save could

����������	
� benefit from a higher inflation environment and of the non-availability to saving-prone students

of appropriate financial instruments to hedge against inflation, although this argument seems a little far-

fetched.
9

Moreover, in Shafir et al article (Shafir, Diamond, & Tversky, 1997) the adjustment of the salary to the

inflation rate is made with a full year lag. It could thus come as no surprise that Barbara, who endured a 4%

inflation rate before getting, at the end of the year, her 5% salary increase, was deemed, at that moment,

happier than Ann, who had no inflation during the first year and then received a 2% salary increase – although

the response to the third question, that it is Ann who is more likely to quit for another job, is consistent with

money illusion.
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correctly chose the scenario B – either because they managed to do the precise calculation
10

or because

they had a preference for a low inflation – and a minority considered that both scenarios were

identical in economic terms (19%). Answers differ depending on the subjects’ type of education, and

depending on their level of financial literacy, with financially literate subjects able to see that the two

situations are roughly equal much more often than financially illiterate ones (24% compared to 9%).

Question 1: What is the best scenario

in economic terms?

Scenario A

(higher inflation)

Scenario B

(lower inflation)

Both scenario are

the same

Results: 35% 46% 19%

It is likely that the careful wording of Question 1, as detailed above, explains why our results differ

significantly from Shafir’s survey, finding fewer subjects exhibiting money illusion (35%). But the

difference could also be the consequence of different samples (nationality, level of education).

Education type

The term “economically” may have prompted students to adopt a more economically oriented frame of

thought, and possibly contribute to some extent to the lesser degree of money illusion observed from

the answers. To try to assess in what extend, one can compare the non-economics students’ answers to

the economics students’ one. The expectation would be that the economics students would give more

often the correct answer than non-economics students, in particular when reminded to think in

economics terms. The results confirm this expectation.

Question 1: What is the best scenario

in economic terms?

Scenario A

(higher inflation)

Scenario B

(lower inflation)

Both scenario are

the same

Science 45% 36% 19%

Economics 17% 60% 23%

Law and literature 50% 41% 9%

Fischer exact test p-value: 0.02; Pearson chi2 p-value: 0.025

Less than 2 economics students in 10 chose the high inflation scenario (A) vs. around half of the other

students. Moreover, a large majority of them (60%) correctly chose the low inflation scenario (B) vs.

only 3 or 4 other students in 10. These results mean that a serious training in economics, during which

students are used to think in real terms, may be useful to reduce money illusion bias when subjects are

asked to compare different scenarios in economic terms. Moreover, this training seems especially

10
The similar percentage of financially literate subjects and financially illiterate subjects preferring the low

inflation environment does not sustain this particular interpretation, which is understandable given that

scenario B is only 0.11% better than scenario A.
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useful to manage to compare exactly both scenarios, even if a preference for a low inflation

environment cannot be excluded since they have learned that a low rate of inflation is better.

Surprisingly, the only difference observed between the other students is related to the third answer:

students in science are more likely to consider that both scenarios are the same than students in law

and literature. It could be that financial literacy has an impact on subject’s preferences. This

hypothesis is supported by the results obtained from the test of subjects’ financial skills.

Financial literacy

Financial literacy has a strong impact on the type of subject’s preferences. Financial literate subjects

are less likely to choose the high inflation scenario (A) and more able to consider both scenarios are

the same, thus exhibiting less money illusion. This result supports the hypothesis that money illusion

may be partly explained by a lack of financial skills.

Question 1: What is the best scenario

in economic terms?

Scenario A

(higher inflation)

Scenario B

(lower inflation)

Both scenario are

the same

Not financially literate (score = 0) 50% 41% 9%

Financially literate (score = 1) 28% 49% 24%

Fischer exact test p-value: 0.046

In conclusion:

1. These results show that the average prevalence of money illusion (about one third) conceals

significant differences between students: Only 17% of the students in economics exhibit

money illusion vs. about 50% of the other students.

2. Students in economics are especially more likely to prefer the low inflation scenario (60%)

than other students (about 40%).

3. Both other groups of students prefer the high inflation scenario (A).

4. Financially literate subjects are more able to see that the two situations are the same (24%)

compared to financially illiterate subjects (9%). Financially illiterate students tend also to

prefer the high inflation scenario (50%) while financially literate students preferred the low

inflation scenario (49%).

Question 2

This question, close to Problem 2 from Shafir et al, refers to real vs. nominal house price change but

makes explicit the use of the funds obtained from the selling of a house and eliminates the risk of

interregional arbitrage based decisions.
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Wording

You have been living in a house you brought 200 000 euros one year ago, but decided this year to sell

it to immediately re-purchase another house in the same region with all the proceedings of the sale.

Consider the three alternative scenarios:

Scenario A: The prices of all services and goods, including houses and flats, in the economy have

decreased by 25%. You are able to sell the house at 154 000 euros (23% less than what you paid).

Scenario B: There has been neither inflation nor deflation, and you sold the house for 198 000 euros

(1% less than what you paid).

Scenario C: The prices of all services and goods, including houses and flats, in the economy have

increased by 25%. You are able to sell the house for 246 000 euros (23% more than what you paid).

Please indicate:

According to you which Scenario describes the most profitable double house transaction (selling your

house to buy another one at the market price)?

Which Scenario describes the least profitable one?

Which Scenario would bring you the most satisfaction?

Which Scenario would bring you the least satisfaction?

The most profitable double transaction is of course that of Scenario A, with a real gain of about +2%

in terms of house values. Here again, the phrasing in terms of Scenario is aimed to prevent cross-

region arbitrage.

Results

We find that the subjects seem adverse to the nominal losses entailed by Scenario A, and thus prefer

the scenarios without deflation (Scenarios B and C) even if they entail real losses. Answers are almost

completely unchanged across each different type of education and respondents’ nominal loss aversion

scores. By contrast, sex and especially financial literacy have an impact.

Interestingly, there are many subjects among those choosing the correct answer about the most

profitable scenario (Scenario A) which still considered it is not the scenario which will bring them the

most satisfaction. More precisely, 24% of the subjects correctly choosing Scenario A as the most

profitable scenario also answered it is not the Scenario that would bring them the most satisfaction,

and 21% answered it would bring them the least satisfaction.

Question 2 Scenario A

Deflation, large

nominal loss but

real gain

Scenario B

No inflation,

small real loss

Scenario C

Inflation, large

nominal gain but

real loss

Scenario that describes the most 39% 27% 33%
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profitable double house transaction

Scenario that describes the least

profitable double house transaction

39% 17% 44%

Scenario that would bring you the

most satisfaction

30% 19% 51%

Scenario that would bring you the

least satisfaction

54% 10% 36%

Contrary to Question 1, students in economics do not provide the right answer more often than other

student groups. It could be that they are more trained to think in real terms about wages than real estate

or that a nominal loss aversion or anchoring bias is at play even if subjects’ nominal loss aversion

score has no impact on these answers .

Interestingly compared to other studies, the presence of an intermediate case has a significant impact

since it was selected by a considerable number of participants: 26% recognized that Scenario B, with

its explicit 1% loss – explicit since there is no inflation – is better than the Scenario C and its apparent

23% gains, while at the same time surprisingly failing to understand that it is not better than Scenario

A, which translates into a 2% real gain, despite the 23% nominal loss
11

. These inconsistent answers at

the individual level support the money illusion hypothesis.

Sex

Women preferred the no inflation scenario in larger number than men (25% instead of 8%) making

less often the wrong choice of high inflation scenario (Scenario C) but also less often the right choice

of deflationary scenario (Scenario A).

Question 2 bis: Scenario that

describes the least profitable double

house transaction

Scenario A

Deflation, large

nominal loss but

real gain

Scenario B

No inflation,

small real loss

Scenario C

Inflation, large

nominal gain but

real loss

Male 44% 8% 48%

Female 34% 25% 41%

Fischer exact test p-value: 0.063

11
Indeed, because all houses have fallen by more (25%), the 2% gains compared to an average transaction will

result either in a net positive cash flow from the two transactions (selling then buying a house of same standing

and size) or by the ability to obtain, with the 154 000 euros of proceedings from the selling of the first house, a

better house than the one previously owned (“2% better”). This is neglecting the (huge) transaction costs in

real estate, but including transaction costs would make Scenario A even more attractive compared to other

scenarios as the nominal value of houses is lower in Scenario A and real estate fees are often a percentage of

the nominal rather than real value. Hence, transaction costs could not explain the results obtained.
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Financial literacy

Again, financial literacy has a strong impact on subject’s preferences: Financial literacy students were

more likely to choose the scenario A, exhibiting then less money illusion than others students in

Question 2 (even if they were surprisingly more likely to choose the scenario C) and Question 2 ter.

Question 2: Scenario that describes

the most profitable double house

transaction

Scenario A

Deflation, large

nominal loss but

real gain

Scenario B

No inflation,

small real loss

Scenario C

Inflation, large

nominal gain but

real loss

Not financially literate (score = 0) 26% 44% 29%

Financially literate (score = 1) 46% 19% 35%

Fischer exact test p-value: 0.027

Question 2 ter: Scenario that would

bring you the least satisfaction

Scenario A

Deflation, large

nominal loss but

real gain

Scenario B

No inflation,

small real loss

Scenario C

Inflation, large

nominal gain but

real loss

Not financially literate (score = 0) 15% 21% 65%

Financially literate (score = 1) 38% 18% 44%

Fischer exact test p-value: 0.047

In conclusion:

1. In this question focused on real estate transaction, participants gave similar results whatever

their education, in striking contract to Question 1 which focused on wages. A training in

economics is here not efficient to reduce money illusion exhibited in subjects answers,

contrary to financial literacy skills.

2. Despite the double-transaction phrasing, there is still a large majority of respondents who

manifest money illusion (about 60% of them do not select the Scenario A, which is the best in

real terms).

3. There is an intra-individual inconsistency which would need further exploration. Indeed the

respondents who answered scenario B manage to see that in real terms B is superior to C,

while failing to see it is inferior to A. There seem to be a nominal anchoring at play there,

where a transaction realized at a much lower level than the initial buying is deemed a poor

transaction independently of the level of utility it brings (as in Scenario A, it brings the

maximum utility for the double-transaction envisioned). Hence one could see interacting
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anchoring bias with money illusion, which would result in the intra-individual inconsistent

answers observed for this group.

4. 21% of subjects choosing correctly answer A as the most profitable scenario also consider it as

the least satisfying scenario. This result shows that even subjects able to indicate the best

scenario in real terms from an economic viewpoint would not be satisfied with that scenario.

The perception of satisfaction is here clearly distinct from economic assessment, and more

sensitive to money illusion.

Question 3

The aim of this question is to test subjects’ expectations about wage increase in case of inflation.

Wording

During higher inflation times, is it more or less probable that salary increases?

More probable Less probable The same

Results

Answers are reported below:

Question 3 More probable Less probable The same

During higher inflation times, is it

more or less probable that salary

increases?

58% 21% 21%

The answers indicate that the assumed close relationship of salaries moving one-to-one with inflation

is being questioned by respondents, including students in economics. Among them 17% believe it is

less likely that salary increase in high inflation times.

Sex

A significantly higher proportion of women than men (rightly) believe salary increases are more likely

during high inflation times.

Question 3 More probable Less probable The same

male 48% 20% 32%

female 68% 23% 9%

Fischer exact test p-value: 0.011; Pearson chi2 p-value: 0.011

Financial literacy

Financial literacy is a very significant explanatory variable of the subject’s belief on the probability of

salary increases during inflationary times. More precisely, subject who were able to correctly discount
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future cash-flows in the financial literacy survey gave twice more often the answer that salary

increases are more likely in higher inflationary environment than those who did not.

Question 3 More probable Less probable The same

Not financially literate (score = 0) 38% 29% 32%

Financially literate (score = 1) 68% 18% 14%

Fischer exact test p-value: 0.012

Risk aversion

Low risk-averse subjects are more likely to believe salary increases are more probable in inflationary

times than do the high risk adverse subjects but the difference is low (62% vs. 55%).

Question 3 More

probable

Less

probable

The same

Low risk adverse 62% 26% 11%

High risk adverse 55% 17% 28%

Fischer exact test p-value: 0.078

Question 4

This question aims to collect subjects’ judgments of fairness and luck about adjustment of wage in

case of inflation. Tom wage was chosen such that it is not a round number to avoid involving

psychological levels in numbers. The question was phrased as follows.

Wording

The economy this year has been experiencing an annual rate of 5% inflation. The firm which employs

Tom has seen its profits increase by 5% compared to last year, and decided to increase all of its

employee salaries by 5%. Tom’s salary is thus increased from 1120 euros to 1176 euros.

Do you think Tom will consider himself:

lucky unlucky neither

In your opinion this situation is …….. (choose below) to Tom and the other employees.

fair unfair depends

Results

The majority of respondents –about 58% - answer correctly “none of those”, exhibiting no money

illusion. Nevertheless 38% of subjects do answer “lucky”, potentially supporting the hypothesis that
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because it could have been the case that the salary of Tom would not have been increased, Tom may

give a higher positive value to the present situation. Also, a significant number of subjects (56%)

correctly believe that the situation of Tom is fair compared to other employees. There is no significant

difference in answers across education group or sex type.

Question 4 lucky unlucky none of those

Do you think Tom will consider

himself

38% 4% 58%

Question 4 bis fair unfair depends

In your opinion this situation is ……..

(choose) to Tom and the other

employees

56% 7% 38%

Sex

Similar to Question 5, women seems to exhibit slightly less money illusion than men as they answer

that Tom will consider himself neither lucky nor unlucky in a higher proportion (64%) than men

(52%). However, more of them also consider the situation of Tom as unfair compared to other

employees (13% vs. 0% for men), which is difficult to explain given than other employees have the

same salary increase than Tom.

Question 4: do you think Tom will

consider himself

lucky unlucky none of those

Male 48% 0% 52%

Female 29% 7% 64%

Question 4 bis: in your opinion this

situation is …….. (choose) to Tom

and the other employees

fair Unfair depends

Male 68% 0% 32%

Female 45% 13% 43%

Fischer exact test p-value first question: 0.025; second question: 0.060

Nominal loss aversion

Non nominally adverse subjects are better at providing the correct answer to Question 4 bis that the

situation is fair (68%). Nominally adverse subjects are less prone to propose this correct answer but
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surprisingly the relation between that dimension and money illusion exhibited is non-monotonous

since strongly nominally adverse subject are more likely to give the correct answer than slightly

adverse ones (58% vs. 49%).

Question 4 bis: In your opinion this

situation is …….. (choose) to Tom

and the other employees

fair Unfair depends

Not nominal loss adverse 68% 7% 25%

Slightly nominal loss adverse 49% 2% 49%

Very strongly nominal loss adverse 58% 21% 21%

Fischer exact test p-value: 0.008

Question 5

The same two questions were asked, but within a deflationary context.

Wording

All prices in the economy have decreased by 5%. The firm which employs Tom has seen its profits

decreased by 5% this year compared to last year. It decided to cut employees salary by 5%. Tom’s

salary is thus decreased from 1120 euros to 1064 euros.

Results

There is an important asymmetry between the two contexts while they are identical in real terms. Only

7% of subjects think that Tom will consider himself as lucky in deflation and 60% as unlucky vs. 38%

and 4% in inflation. Moreover, about 5 times more subjects consider his situation unfair when his

salary is adjusted downward in a global deflationary economy than when it is adjusted upwards in a

similar inflationary environment, indicating huge differences of perception between the two contexts.

There is no significant difference in answers across sex type for both questions as across education

type for the first question, but there are significant differences across education type for the second

question.

Question 5 Lucky Unlucky none of those

Do you think Tom will consider

himself

7% 60% 34%

Question 5 bis Fair Unfair depends

In your opinion this situation is ……..

(choose) to Tom and the other

employees

33% 32% 35%
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In matters of fairness, respondents judge asymmetrically nominal adjustments of wages in case of

inflation and deflation: It is considered fair to increase salary in case of inflation, but not fair to

decrease it in deflation. This may be the root of downward wages rigidity. Possible reasons to explain

that asymmetry include a nominal loss aversion or a nominal anchoring. Nevertheless, in the present

case there is no significant differences between subjects which show nominal loss aversion and those

who do not: The p-value of Fisher exact test is high, about 65%, for the usual categories defined

earlier.
12

Hence the explanation could be a differentiated perception of wage adjustment according to

price change that may be reinforced by a form of insurance implicit contract between employers and

employee. Indeed, adjustment of wages in case of inflation is in favor of employees, who would

otherwise loose some purchasing power, while in case of deflation, the absence of adjustment is an

advantage. If, inflation is more prevalent than deflation, and wage increases often delayed and lower

than price changes, agents may have an unfairness feeling about inflation: They consider they are

often affected by inflation, then deflation may be an opportunity to regain purchasing power. Hence

they could consider as fair not to decrease wages in case of deflation. Moreover, times of deflation are

associated with more difficult economic conditions, and the employee might expect some protection

from the firm, with no salary decrease; in return he may implicitly accept lower salary increases in

times of inflation or growth to compensate.
13

Education type

Students in economics and in law and literature provided more often the “it depends” answer when

asked to assess Tom situation than students in science. Apart from this result, each of the groups is

equally split between “fair” and “unfair” answers in the deflationary scenario of Question 5, indicating

a similar confusion about fairness in case of a deflationary scenario. Hence the only difference seems

to be that students in science are less likely to express a conditional assessment on the fairness of the

situation.

Question 5 bis: in your opinion this

situation is …….. (choose) to Tom

and the other employees

Fair Unfair depends

Science 43% 43% 14%

Economics 24% 24% 52%

Law and literature 32% 27% 41%

Fischer exact test p-value: 0.006; Pearson chi2 p-value: 0.008

Contrary to Question 4, its symmetric in inflationary times, there is no effect of nominal loss aversion

on answers. Ficher exact test p-values is close to 40 %, indicating no significant difference between

groups.

Question 5 bis: In your opinion this

situation is …….. (choose) to Tom

fair Unfair Depends

12
The p-value of Fisher exact test is 0.648, that is, about 65%, for the usual categories of loss aversion defined

earlier.
13

Of course, the situation of the firm and market power of unions and employers may have an impact on wage

adjustments and their perception.
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and the other employees

Not nominal loss adverse 4% 57% 39%

Slightly nominal loss adverse 7% 56% 37%

Very strongly nominal loss adverse 5% 79% 16%

Fischer exact test p-value: 0.396

Question 6

This question is designed so as to ask individuals to compare both situations i.e. adjustment of wages

in case of inflation and deflation.

Wording

In which situation of the one described in Question 4 or in Question 5 do you think Tom would be

luckier?

Question 4 Question 5 The same

In which situation of the one described in Question 4 or in Question 5 do you think Tom would be

better off?

Question 4 Question 5 The same

In which situation of the one described in Question 4 or in Question 5 do you think the firm’s decision

is the fairest?

Question 4 Question 5 The same

Results

69% of the subjects believe Tom would be luckier in the inflationary scenario of Question 4 whereas

only 40% believe it is the situation in which Tom is better off. Hence, a substantial proportion of the

subjects who correctly chose the answer that none of the two scenarios is better for Tom than the

other, and hence have no money illusion, consider that he would be luckier either because they expect

him to have some money illusion or think that his wage could not have been raised.

About fairness, the huge asymmetry previously noticed applies again: Increasing the salary in inflation

is deemed fair while decreasing it in deflation is deemed unfair since only 10% of subjects believe the

firm decision is fairest in Question 5 as opposed to 57% who believe it is fairest in Question 4.  There

is no significant difference in answers across education group or sex type.

Question 6 Question 4

(inflationary

environment)

Question 5

(deflationary

environment)

none of

those
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In which situation of the one described do you think

Tom would be luckier?

69% 8% 24%

In which situation of the one described do you think

Tom would be better off?

40% 13% 47%

In which situation of the one described do you think the

firm’s decision is the fairest?

57% 10% 33%

Sex

More women indicated the deflationary scenario as being the fairest than men.

Question 6 ter: In which situation of

the one described in Question 6 or in

Question 7 do you think the firm’s

decision is the fairest?

Question 4

(inflationary

environment)

Question 5

(deflationary

environment)

none of those

Male 66% 4% 30%

Female 48% 16% 36%

Fischer exact test p-value: 0.066

Question 7

This question is aimed to check if an explicit indexation wage scheme has an impact on subjects’

judgment.

Wording

The economy this year has been experiencing an annual rate of 5% inflation. The firm which employs

Tom has seen its profits increase by 5% compared to last year. The firm had signed a contract indexed

to inflation with all its employees, meaning the salaries it pays automatically adjust to inflation. Hence

this year its employee will have a 5% salary rise. Tom’s salary is thus increased from 1120 euros to

1176 euros.

Do you think Tom will consider himself:

lucky unlucky neutral

In your opinion this situation is …….. (choose below) to Tom and the other employees.

fair unfair depends
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Results

Results are very consistent with those of Question 4. A slightly higher number of subjects consider the

situation to be fair compared to Question 4, with less “it depends” answers collected. Clearly the fact

to have signed and to respect an inflation-indexed contract reduces uncertainty about the situation

fairness (less “it depends” answers) and honoring the contract is just “fair”. Moreover as many

respondents consider Tom to be lucky in both situations, contrary to our expectations since an

automatic adjustment might be more neutral than a decision of the firm. Hence we expected to collect

more answers “neither lucky nor unlucky” to this question. It is possible that respondents judge Tom

to have been lucky to sign an indexed contract in the first place, or simply that this particular

discretionary item does not influence the respondents opinion concerning Tom luck, but only their

opinion about fairness.

Question 7 lucky Unlucky none of those

Do you think Tom will consider

himself

38% 6 56%

Question 7 bis fair Unfair depends

In your opinion this situation is ……..

(choose) to Tom and the other

employees

70% 8% 22%

Nominal loss aversion

Again, the results are similar to those of Question 4 bis.

Question 7 bis: In your opinion this

situation is …….. (choose) to Tom

and the other employees

fair Unfair depends

Not nominal loss adverse 78% 11% 11%

Slightly nominal loss adverse 75% 3% 22%

Very strongly nominal loss adverse 47% 16% 37%

Fischer exact test p-value: 0.044

Question 8

The same two questions were asked, but within the following deflationary context.

Wording

All prices in the economy have decreased by 5%. The firm which employs Tom has seen its profits

decreased by 5% this year compared to last year. The firm had signed a contract indexed to inflation
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with all its employees, meaning the salaries it pays automatically adjust to inflation. Hence this year its

employee will have a 5% salary cut. Tom’s salary is thus decreased from 1120 euros to 1064 euros.

Results

Again, results are consistent with those of Question 5, except the significant higher proportion of

respondents finding the situation as fair: 52% believe it is fair, given the indexed contract, for the firm

to decrease Tom salary, compared to only 33% when the firm decides (Question 5). Also, 49%

believes Tom is unlucky in this question compared to the higher 60% of Question 5. Indexation clearly

has an impact on fairness and luck perception, in the exact same environment and according to the

same respondents. This result supports the previous hypothesis of a differentiated perception of wage

adjustments: In case of an indexed-contract, the feeling of unfairness in case of inflation disappears so

the asymmetry between the results obtained in both contexts reduces.  Again, there is no significant

difference in answers across education group or sex type.

Question 8 lucky Unlucky none of those

Do you think Tom will consider

himself

8% 49% 43%

Question 8 bis fair Unfair Depends

In your opinion this situation is ……..

(choose) to Tom and the other

employees

52% 21% 27%

Education type

Education type has an impact on answers to Question 8 bis. Students in science provided less often the

answer “it depends” compared to students in economics (12 vs. 40%) and in law and literature (32%)

when asked if Tom situation is fair, a result consistent with that obtained for Question 5 bis.

Question 8 bis: in your opinion this

situation is …….. (choose) to Tom

and the other employees

fair Unfair Depends

Science 62% 26% 12%

Economics 45% 14% 40%

Law and literature 45% 23% 32%

Fischer exact test p-value: 0.044; Pearson chi2 p-value: 0.052
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Question 9

Like question 6, this question aims to ask individuals to compare both situations, the only difference

being the indexation of the contract.

Wording

In which situation of the one described in Question 7 or in Question 8 do you think Tom would be

luckier?

Question 7 Question 8 The same

In which situation of the one described in Question 9or in Question 10 do you think Tom would be

better off?

Question 7 Question 8 The same

In which situation of the one described in Question 8 or in Question 9 do you think the firm’s decision

is the fairest?

Question 7 Question 8 The same

Results

Results are consistent with previous questions, but also show that changing the wording to imply

passivity from the firm (the contract is now indexed) does not modify the desirability of one of the two

scenario compared to the other in terms of luck: It only affects fairness, as the percentage of subjects

believing the inflationary scenario is the fairest falls from 57% to 39% when indexation is added to the

contract. Again, there is no significant difference in answers across education groups or sex type.

Question 9 Question 7

(inflationary

environment)

Question 8

(deflationary

environment)

none of

those

In which situation of the one described do you think

Tom would be luckier?

65% 9% 24%

In which situation of the one described do you think

Tom would be better off?

44% 9% 46%

In which situation of the one described do you think the

firm’s decision is the fairest?

39% 10% 51%
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Financial literacy

Financial literacy is a very significant explanatory variable of the type of subject’s preferences. A

majority of the financial literate subjects consider both situations as equivalent while a majority of the

others consider Tom would be better in the inflationary one.

Question 9 bis: In which situation of

the one described do you think Tom

would be better off?

Question 7

(inflationary

environment)

Question 8

(deflationary

environment)

none of those

Not financially literate (score = 0) 56% 15% 29%

Financially literate (score = 1) 39% 7% 54%

Fischer exact test p-value: 0.048

Question 10

This question aims to assess if the mention of no price increase, because it triggers no alternative

scenario and gives directly the real increase of wage, has an impact on respondents answers.

Wording

Assume you have neither debt nor savings, and that you spend each month all your 1600 euros

monthly salary, but not more, that is you do not contract debt. Which situations would you rather be in

(assuming all other things are equal in the two scenarios)?

Scenario A: Prices stay the same in the economy and you got  salary increase of 2%. Your salary thus

increases from 1600 euros to 1632 euros.

Scenario B: There is 4% inflation in the economy and you got a salary increase of 5%. Your salary

thus increases from 1600 euros to 1680 euros.

Scenario A Scenario B Both

Results

Subjects exhibit a low sensitivity to money illusion in this question since 82% of them rightly prefer

the higher real pay increase of Scenario A to the higher nominal pay increase of Scenario B. It is very

likely that, as for Question 1 which was also about wages, providing a clear context allows to reduce

the money illusion exhibited in answers, even more here, since the question includes a simpler

alternative, in which the real increase of wage was obvious. There is no significant difference in

answers across sex type or across education groups, contrary to question 1, which may due to the fact

the comparison between both scenarios being easier, all groups of students were more able to give the

correct answer.
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Question 10 Scenario A

(low inflation

environment)

Scenario B

(high

inflation

environment)

Both

Which situations would you rather be in (assuming all

other things are equal in the two scenarios)?

82% 15% 3%

Question 11

The framing of this question enable us to check if changing the “no event” level of inflation of the

previous question, that is, the “no price increase” assumption, while keeping the real situations

unchanged, provokes different answers.

Wording

Assume you have neither debt nor savings, and that each month you spend all your 1600 euros

monthly salary (but not more, that is, you do not contract debt). Which situations would you rather be

in (assuming all other things are equal in the two scenarios)?

Scenario A: There is 1% inflation in the economy and you got a salary increase of 3%. Your salary

thus increases from 1600 euros to 1648 euros.

Scenario B: There is 4% inflation in the economy and you got a salary increase of 5%. Your salary

thus increases from 1600 euros to 1680 euros.

Scenario A Scenario B Both

Results

Subjects provided answers consistent with previous question. The question provides a robustness

check to the previous answers to Question 10. Again, there is no significant difference in answers

across education group or sex type.

Question 11 Scenario A

(low inflation

environment)

Scenario B

(high

inflation

environment)

Both

Which situations would you rather be in (assuming all

other things are equal in the two scenarios)?

79% 12% 9%
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Nominal loss aversion

The higher degree of nominal loss aversion respondents have, the higher their preference for the high

inflation environment, even if the real returns are twice lower in the high inflation environment of

Scenario B than in the low inflation environment of Scenario A. This result supports the hypothesis of

a relation between both biases of money illusion and nominal loss aversion.

Question 11 Scenario A

(low inflation

environment

Scenario B

(high inflation

environment)

Both

Not nominal loss averse 92% 7% 0%

Slightly nominal loss averse 83% 9% 8%

Very strongly nominal loss averse 47% 32% 21%

Fischer exact test p-value: 0.044

Risk aversion

High risk-averse subjects tend to prefer the low inflation scenario more often (87%) than low risk-

averse respondents (72%). The difference between both groups, higher than that observed in question

3, cannot be easily interpreted since there is no reason for risk-aversion and money illusion to be

inversely related. Further exploration is needed to test this relation as well as other hypothesis like a

preference of high-risk averse subjects for low inflation contexts that could bias the results.

Question 11 Scenario A

(low inflation

environment

Scenario B

(high

inflation

environment)

Both

Low risk adverse 72% 21% 8%

High risk adverse 87% 4% 10%

Fischer exact test p-value: 0.030

Question 12

This question aims to test if subjects are able to compare two different real vs. nominal rates of return

in case of inflation from various viewpoints.

Wording

A fund, by buying and selling securities, makes some return for investors.

Scenario A: There is a 1% inflation rate and the fund manages to get a 6% return.

Scenario B: There is a 10% inflation rate and the fund manages to get a 15% return.
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Which of the two scenarios do you believe is the best in economic terms?

Scenario A Scenario B Same

Which scenario do you think is the most beneficial for the fund manager?

Scenario A Scenario B Same

Which scenario do you think is the most beneficial for the investors?

Scenario A Scenario B Same

Results

As in question 1, while both scenarios are approximately equivalent in real terms, a precise calculation

indicates that the low inflation scenario (A) is slightly better. However, students were more able to

compare both scenarios in economic terms since only 13% of them considered that the high inflation

scenario (B) was better and can then be considered as exhibiting money illusion. A vast majority

correctly chose the scenario A (63%) and the others considered both scenarios as equivalent in

economic terms. These results may be due to the fact the comparison deals only with two rates, hence

subjects were not influenced by nominal values, in contrast to other questions, like question 1 which

refers to nominal wages.  A closer look at respondents answers indicate they are similar for all

education type.

Nonetheless, a significant proportion of students have changed their answers when they were asked to

give an opinion on the scenario in which the fund manager, or alternatively the investors will be

happier. About 40% of them considered that the fund manager or the investors will be happier with the

high inflation scenario (B). Given that most of these respondents were able to see that scenario was not

the better in economic terms, these results suggest that even if individuals are able to compare

different situations in real terms, they could prefer (or consider that others could prefer) the one which

is better in nominal terms. Again, there is no significant difference in answers across education groups

or sex type, except the third question with one significant difference across education type.

Question 12 Scenario A

(low inflation

environment)

Scenario B

(high

inflation

environment)

the same

Which of the two scenarios do you believe is the best in

economic terms?

63% 13% 24%

In which scenario do you think the fund manager will

be happier?

40% 42% 18%

In which scenario do you think the investors will be

happier?

41% 38% 22%
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Education type

Students in economics chose less often the high inflation scenario (B) in the third version of the

question than other students, exhibiting then less money illusion. The rest of the results barely differ

across education groups.

Question 12 ter: in which scenario do

you think the investors will be

happier?

Scenario A

(low inflation

environment)

Scenario B

(high inflation

environment)

the same

Science 43% 43% 14%

Economics 40% 24% 36%

Law and literature 36% 55% 9%

Fischer exact test p-value: 0.036; Pearson chi2 p-value: 0.0030

Financial literacy

Financial literacy does not have on impact on the answers to the first two questions (Question 12 and

Question 12 bis). But Question 12 ter shows that a significant higher proportion of non-financially

literate subjects believe that investors will be happier in the high inflation scenario (B), more than half

of them can then be considered as exhibiting money illusion vs. about 30% of the financial literate

subjects. Of course, the former can have considered that investors would not have the hedge against

inflation provided by the fund return but in that case, financially literate students might also have been

sensitive to that argument, and clearly they didn’t, as indicated by their different answers.

Question 12 ter: in which scenario do

you think the investors will be

happier?

Scenario A

(low inflation

environment)

Scenario B

(high inflation

environment)

the same

Non-financially literate (score = 0) 24% 56% 21%

Financially literate (score = 1) 49% 29% 22%

Fischer exact test p-value: 0.048

Risk aversion

Risk-aversion has an impact on answers. High risk-averse subjects are more likely to prefer the low

inflation scenario (74%) than low risk-averse ones (53%). The results are consistent with question 11.

Question 12 Scenario A

(low inflation

environment

Scenario B

(high

inflation

the same
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environment)

Low risk adverse 53% 19% 28%

High risk adverse 74% 8% 18%

Fischer exact test p-value: 0.030

4. Conclusion

The results obtained support the hypothesis of a significant prevalence of money illusion bias. Even

students enrolled or having a Master degree expressed answers biased by money illusion to most of the

questions of the survey. Moreover, any of the individual characteristics collected seem to be an

important factor to explain that bias. However, students in economics seem less affected by money

illusion than other students in some questions and financial literacy skills seem to have a true negative

impact on that bias. Finally, the money illusion exhibited depends on the context and the way

questions are formulated. Individuals are less likely to exhibit money illusion when alternatives are

easy to compare in real terms and when asked to express a judgment on economic terms than on

fairness, luck or happiness. We observe significant asymmetries between inflationary and deflationary

contexts, particularly in that last type of judgments.

Education type

Differences observed between education groups were mentioned when appropriate in the previous

section. Education type especially matters for money illusion in Question 1, where students in

economics manifest clearly less money illusion than others. The question was phrased in economic

terms. It also matters for Question 5, Question 8 bis and Question 12 ter, but to a lesser extent.

Because the survey contains many questions similar to Question 1, but often without the mention “in

economic terms”, it is likely that the phrasing of the question had an impact on the answers collected

from economists.

For all other questions in the survey, students in economics exhibit the same prevalence of money

illusion than other students.

Hence, education type doesn’t have an important impact on money illusion bias subjects

manifested in their answers to that survey. Even an important economics training (4 or 5 years

of higher education in economics) is not sufficient to reduce significantly that bias. This result
supports the hypothesis of a strongly rooted bias.

Sex

Differences related to sex were also mentioned when appropriate in the previous section. Except for

Question 2, where women preferred the no inflation scenario in larger number than men (25% instead

of 8%) making less often the wrong choice of high inflation scenario but also less often the right

choice of deflationary scenario, differences between men and women were more pronounced when

respondents were asked to give judgment of fairness or luck about wages adjustments on prices and

probability of wage increases during inflationary times (Question 3, Question 4, Question 4 bis and

Question 6 ter). Even if the answers to these questions might be influenced by the degree of money

illusion respondents have, additional factors might be at play.
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Hence sex does not a major influence on respondents’ degree of money illusion from

respondents, although it seems to have a non-negligible impact on some particular types of

judgments, invoking fairness or luck.

Financial literacy

Financial literacy, as captured by the ability to correctly discount future payments of the two questions

included in the survey, seems strongly inversely correlated with money illusion.

Indeed, the two groups of respondents have statistically significant different answers to Question 1,

Question 2, Question 9 bis, Question 12 ter. Financially illiterate students tend to be more subject

to money illusion, which is an understandable result in view of the importance of discounting in

assessing real values.

Answers to Question 3, the probability of wage increase in inflationary times, is also influenced by

financial literacy. Financially literate students provided the correct answer, that is, that there is a

correlation between wages increases and inflation, twice more often than non-financially literate

subjects.

Finally, only one question out of the four related to a judgment on satisfaction (Question 2 ter) is

influenced by financial literacy. Hence it seems financial literacy has little or no impact on the

perception of happiness linked to higher nominal wages.

According to these results, the hypothesis of an inverse relationship between financially literacy skills

and money illusion bias cannot be excluded. Programs of education devoted to specific financial

learning could then help people to think in real, rather than nominal, terms, i.e. to reduce money

illusion prevalence in the population.

Nominal loss aversion

Nominal loss aversion matters for money illusion in Question 11 with a clear positive correlation

between the degree of nominal loss aversion and the preference for higher inflation scenarios.

Although the result to Question 11 are clear cut, this correlation between nominal loss aversion and

money illusion is mitigated by the fact there is no statistically significant differences between the

answers of subjects with different degree of nominal loss aversion in the other questions, except

two of these.

Indeed, nominal loss aversion is correlated to the answers related to two questions about fairness

(Question 4 bis, Question 7 bis). Nominally loss adverse subjects more often fail to assess properly

situation of fairness in inflation time, but here again the results are mitigated by the fact no statistically

different answers were obtained from nominally loss adverse subjects to the other questions relating to

fairness.

Hence, there is insufficient evidence to conclude on a clear positive relation between nominal loss

aversion and money illusion. Further exploration is clearly needed to conclude on the nature of the

relation between both biases.

Risk aversion

High risk adverse subjects exhibited less money illusion in two questions than low risk averse ones but

their answers may be due to a preference for low inflation (Questions 11 and 12). Indeed, these results
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are mitigated by the fact they less often believe that salary increases are more probable in inflationary

times than low risk adverse subjects (Question 3) and moreover by the similar answers of both groups

of subjects to other questions related to money illusion.

References

Boes, S., Lipp, M., & Winkelmann, R. (2007). Money illusion under test. Economics Letters 94, 332-

337.

Bourgeois-Gironde, S., & Guille, M. (2012). Keynes' animal spirits vindicated: An analysis of recent

empirical and neural data on money illusion. Journal of Post-Keynesian Economics, 34(2),

331-352.

Cipriani, G. P., Lubian, D., & Zago, A. (2008). Money illusion: are economists different? Economics

Bulletin, Vol 1, no 3, p 1-9.

Fehr, E., & Tyran, J.-R. (2007). Money Illusion and Coordination Failure. Economic Behavior, 58(2):

246-68.

Fischbacher, U. (2007). Z-tree. Zurich Toolbox for Readymade Economic Experiments. Experimental

Economics.

Fisher. (1928). Money Illusion. New York: Adelphi Company.

Holt, C., & Laury, S. K. (2002). Risk Aversion and Incentive Effects. American Economic Review,

92(5), 1644-1655.

Koskela, E., & Sullström, R. (n.d.). Some tests for money illusion and distribution effects in the

aggregate consumption function. Empirical Economics , Volume 4, Number 4, 221-234.

Lian, P., & Plott, C. R. (1998). General Equilibrium, Markets, Macroeconomics and Money in a

Laboratory Experimental Environment. Economic Theory, 12(1): 21-75.

Mishra, H., Mishra, A., & Nayakankuppam, D. (2006). Money: A Bias for the Whole. Journal of

Consumer Research: An Interdisciplinary Quarterly, University of Chicago Press, vol. 32(4),

pages 541-549, 03.

Miyapuram, K. P., Tbler, P. N., Gregorios-Pippas, L., & Schultz, W. (2009). Money Illusion in the

human brain. Proceedings of the 31st annual meeting of the Cognitive science society,

Amsterdam, 1657-1662.

Noussair, C. R. (2001). Price Bubbles in Laboratory Asset Markets with Constant Fundamental

Values. Experimental Economics, 4(1): 87-105.

Odean, T. (1998). Are Investors Reluctant to Realize Their Losses? Journal of Finance, 53(5): 1775-

98.

Oechssler, J., Schmidt, K., & Schnedler, W. (2007). Asset Bubbles without Dividends. University of

Heidelberg, Working Paper no. 439.



59

Shafir, E., Diamond, P., & Tversky, A. (1997). Money Illusion. The Quaterly Journal of Economics,

vol 112, no. 2, In Memory of Amos Tversky, 341-374.

Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice.

Science, New Series, Vol 211, No. 4481, pp 453-458.

Weber, B. R. (2009). The medial prefrontal cortex exhibits money illusion. PNAS, 106(13), 5025-

5028.

Wong, W.-K. (2005). Does money illusion still matter after some economics education?

Summary statistic tables of exact Fisher test p-values by theme

Effect of :

Theme : Questions of the

Survey

education

type

sex financial

literacy

nominal

loss

aversion

risk

aversion

Money

illusion in

salary

increase,

economic

Question 1 0.020 0.255 0.046 0.601 0.819

Question 6 bis 0.280 0.436 0.146 0.406 0.780

Question 9 bis 0.373 0.883 0.048 0.136 0.136

Question 10 0.581 0.761 0.425 0.262 0.695

Question 11 0.802 0.496 0.128 0.003 0.030

Money

illusion in

house or

financial asset

returns

increase,

economic

Question 2 0.990 0.325 0.027 0.798 0.780

Question 2 bis 0.944 0.063 0.187 0.875 0.662

Question 12 0.724 0.367 0.223 0.735 0.078

Question 12 bis 0.819 0.265 0.735 0.249 0.361

Question 12 ter 0.036 0.823 0.020 0.516 0.773

Satisfaction Question 2 ter 0.979 0.616 0.047 0.907 0.966

Question 2 quar 0.596 0.285 0.331 0.417 0.473

Question 6 0.805 0.949 0.943 0.438 0.177

Question 9 0.843 0.656 0.522 0.806 0.624

Probability

salary increase

Question 3 0.873 0.011 0.012 0.513 0.078
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in inflation

time

Luck in salary

increase

Question 4 0.423 0.025 0.396 0.338 0.657

Question 5 0.627 0.851 0.650 0.648 1.000

Question 7 0.255 0.075 0.401 0.581 1.000

Question 8 0.370 0.706 0.331 0.878 0.595

Fairness Question 4 bis 0.276 0.006 0.607 0.008 0.610

Question 5 bis 0.006 0.940 0.810 0.831 1.000

Question 6 ter 0.731 0.066 0.826 0.547 0.361

Question 7 bis 0.114 1.000 0.831 0.044 0.580

Question 8 bis 0.044 0.575 0.729 0.622 0.580

Question 9 ter 0.599 0.817 0.574 0.277 1.000

NB: Fisher exact test p-values of more than 30% are in italics, those less than 10% are in bold,

indicating statistically different answers for the question at a 10% significance level.
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Article 2: The validity and time-horizon of the Fed model:

a co-integration approach
1
.

1. Introduction

The so-called Fed model for valuing stocks, which became widely popular after the release of the

Humprey-Hawkins report to the Board of Governors of the Federal Reserve System (1997), has been

and remains a widely controversial model among both scholars and practitioners. This simple model

stipulates that comparing the ratio of the earnings over the price of the stock market to the yield of

long-term government bonds indicates whether the stock market is overvalued or undervalued. The

main idea is that bonds and stocks being competitive investments, their expected return – at least when

adjusted for the perceived risk of each asset class – should be set equal by profit-maximizing

investors. We will, throughout this article, denote by Y the yield on long-term government bonds and

by E/P the earning yield of stocks, that is, the ratio of earnings E divided by the price level of the stock

market P.  Let us make the bold assumption, for simplicity of illustration, that both asset classes are

perceived as incurring the same risk by market participants
2
. Then the Fed model argues that the two

quantities Y and E/P will be set equal by rational, return-oriented investors. For example, if it happens

that Y<E/P, it would mean that stocks are cheap (relative to bonds), and investors will sell bonds and

buy stocks, pushing the price P of the stocks higher until the E/P ratio is again set to the level of Y. We

will refer to the Fed model that asserts a strict equality of Y and E/P as to the “strict” Fed model.

Adjusting for perceived risks or other factors can yield other Fed models: the common idea of those

“general” Fed models is that the position of E/P relative to Y is a pertinent indicator for valuing stocks.

Such models can include adjustments for perceived risks, as the one proposed by Asness (2003) which

uses prior realized volatility on stocks and bonds as a proxy for the risk perceived by investors.

From a theoretical perspective, it can be objected that E/P is not the return for investing in stocks, nor

is the yield to maturity the return for investing in bonds (except if the bond is held to maturity and if

all coupons can be reinvested at the same rate). But the main criticism made to the Fed model is that it

compares a real quantity, E/P, to a nominal quantity, the government bond yield Y, and thus assumes

that economic agents are victims of money-illusion, not being able to properly distinguish between

real and nominal values. Indeed, stocks are claims on real assets, which are expected to appreciate

with inflation, whereas the government bond yield is clearly a nominal quantity. Hence not only the

Fed model would lack any firm theoretical grounding, but it is in flagrant contradiction with the

1
This paper has been accepted by the Journal of Empirical Finance, September 2014, code: EMPFIN-S-14-00287.

2
This hypothesis is clearly unrealistic as bonds, and in particular government bonds, are usually assumed less risky than stocks.
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hypothesis of efficient markets
3
. One of the most vivid criticisms of the Fed model is certainly the one

made by Asness (2003). Asness asserts the Fed model is correct as a descriptive tool – documenting

how investors set the prices of stocks - but performs poorly as a predictive tool of subsequent returns.

According to him investors are consistently making the same error, and the Fed model documents this

error. This seems a paradox: how can a model which correctly describes the level to which investors

set the price P of the stock market be denied of any merit as a trading strategy? One element of

answer could be the time horizon. It would be possible that the Fed model allows predicting correctly

the future level of prices P of the stock, but without specifying the time horizon correctly. For

example, and to sustain Asness claim, it could be that the time horizon is excessively short compared

to the longer term horizon of the buy and hold strategy which Asness assumes when he shows that

investing according to the signal offered by the Fed model actually incurs huge losses compared to, for

example, a passive “buy and hold” investment strategy in bonds. Also consistent with this explanation

are the findings of Owain ap et al. (2001). These authors study the historical in-sample performance of

the Fed model as an tactical asset allocation tool for six different countries (the United States, the

United Kingdom, France, Germany, Switzerland and Japan) and conclude that for short-term tactical

allocation, the Fed model has some merit as a relative valuation tool, whereas over a 5 year horizon it

underperforms the more traditional indicators, like the E/P ratio, in each country. Together with

Asness’ own long-term study of the returns this suggests that the time horizon of the Fed model should

be less than 5 years. Interestingly, no study trying to estimate which minimum time period is required

for applying the Fed model with success has been carried out to our knowledge. In this paper we

propose a methodology based on in and out of sample comparisons of different model predictions to

do so. The existence and predictability of a horizon for the Fed model would have huge practical and

theoretical consequences. We use daily, end of the day, weekly and monthly, either end of the period

or average over the sampling frequency period, data to assess the possible time horizon of the Fed

model over a longer period and for different countries.

Because the Fed model posits the existence of a linear relationship between the earning yield and the

nominal bond yield, linear regressions would be the natural candidate for evaluating the Fed model, as

used by Asness (2003). Nevertheless, unit-root tests indicate the series are non-stationary

(independently of the frequency). Hence, a full co-integration approach would be more

methodologically robust. More precisely, in Section 2 we explain why non-stationarity of what we call

“Fed model indicators” implies the Fed model cannot hold. This is because, when these indicators are

not stationary, any deviations to their assumed fair level do not decrease over time. Because the

stationarity of these indicators depends on the time-horizon and on the time-period, stationarity tests

3
For example, in times of higher inflation, we would expect E/P to be roughly stable, since both the earnings E and the price P will co-move

with inflation, whereas Y will move close to one-to-one with inflation, as accredited by numerous studies concerning the so-called “Fisher

effect”.
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on the Fed indicators are carried out at different frequencies and for different sub-samples.  Section 3

studies further the predictive ability of the model for the United States and the Standard & Poor’s 500

index (S&P 500). It uses both the Engle-Granger and the Johansen co-integration framework to build

Vector Error Correcting (VEC) models. To compare the predictive value of the linear, long-term part

of the model, it is compared in terms of performance to a simple Vector Auto-Regressive (VAR)

model of similar size in terms of explanatory variables. Because the only difference between the two

models is the long-term relationship (the “error-correcting term”) when the VAR outperforms the

VEC according to different out-of-sample measures, it shows that this long-term linear relationship

does not have any ability to predict future yields. It is also quite possible that, for example, the VAR

would outperform the VEC for only one of the two variables forecast. For example it could be that the

VAR outperform the VEC for the nominal government yield but not for the earning yield. In that case

we will conclude that the Fed model only has predictive power for the earning yield, and such results

depend on the frequency at which the analysis is performed.  Section 4 tries to determine the time

horizon of the Fed model, also for the United States and the Standard and Poor’s, and uses Engle-

Granger methodology and the same methodology as Section 3, while Section 5 and concludes.

2. International evidence for the strict Fed models

The data used in this section consists of the ten year generic government bond yields of different

countries, as reported by Bloomberg, and of the earnings ratio E/P where E is defined as the trailing 12

months earnings of the enterprises quoted in some stock index of the country under study, and P is the

price level of this index. List 1 in the Annex indicates the stock exchanges earning-ratios studied.

Admittedly, the choice of the trailing earnings for E is rather arbitrary
4
. The source of our data is

Bloomberg, and our dataset extends from the first of January 1963 to the 24 of March 2011 included.

The frequencies of the data used here are daily, end of the day, monthly, end of the month and

monthly, daily average of the month.

Evaluating the strict Fed relationship

What we defined in the introduction as the strict Fed model asserts equality between the earning yield

and the government yield. If the strict Fed model is right and this is indeed the long-term relationship

between the two quantities, then taking the difference or the log-difference of the two series should

result in a stationary series. Indeed if the resulting series has a unit root, then the equilibrium is

meaningless, since any disequilibrium to the relation Y=E/P does not tend to correct over time, but

4
Expected forward earnings would be a most appropriate candidate for E. But because market expectations of forward earnings are rather

imprecise, and in any case much influenced by recent past earnings, and also because of the non-availability of such series for most

countries, we decided to take as a proxy for the future earnings the past, realized earnings, thus following Asness (2003) among others.

Asness actually considered the ten-year trailing earnings, but we believe taking ten year trailing earnings is definitely too backward-looking,

in particular considering the sharp volatility in earnings than the stock exchange has experienced in our sample periods. It would be, of

course, interesting to use other proxies for the expected future earnings, like the aggregate market consensus, when such data is available,

and compare results.



64

exhibits the highest degree of persistency. We can thus define different strict Fed model indicators and

assess their stationarity. The most obvious indicator is the simple difference indicator Y-E/P. When it

has a large negative sign, it coins that stocks are cheap relative to bonds, hence rational investors

seeking to maximize returns will bid up stock prices and the indicator will return towards 0. If the

indicator is positive, then stocks are too expensive relative to bonds and the inverse will happen.

Figure 1 below draws this indicator together with the stock index level
5
.

Figure 1: simple strict Fed indicator for the S&P 500

For the United States and the S&P 500, the indicator did give a strong buying signal in the 1973 to

1980 period, which preceded the formidable increase in stock prices of the 1980 to 2000 period, but it

also gave a strong selling signal from 1980 – or at least, from 1985, to 1995. An investor making

investment decisions accordingly would have missed the run-up in equities of that period. Since 2002

the indicator has consistently given a buying signal, thus being unable to predict the stock market

crash of 2008. Still, visual inspection also reveals it has correctly started giving a buying signal in

2002, precisely when the stock market had bottom from its previous 2000 crash. It also gave a strong

correct buying signal in 2009, but failed to predict the 2007 crash. We leave to the reader to try to

draw eventual long-term trading rules from the data presented in Figure 1, but our overall sentiment is

that visual inspection does not seem to indicate a strong and timely predictive power for this simple

strict Fed indicator. Other possible strict Fed model indicators include the log difference log(Y)-

log(E/P)= log(Y/(E/P)), and the simple ratio Y/(E/P). Similar observations can be drawn for these

other strict Fed indicators. Of course, one could always try to design trading rules, and see if it incurs

any more gains compared to some other strategies. Since any Fed indicator assumes the relevance of

looking at both the government bond yield and the earning yield while assessing the level of stock

5
The graph of this indicator for each other pair of country and stock market studied can be found in the document “Additional supporting

evidence related to the article:  ‘the validity and time-horizon of the Fed model: a co-integration approach’”, available from the author on

request. The least we can say is that evidence is not overwhelming.
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prices, such a trading strategy should, in any study, be compared to the one using only the earning

yield E/P as an indicator, since it is well known that the earning yield does have some predicting

power for future stock returns. The problem is that there are an infinite number of possible trading

strategies, depending on what we define to be a trading signal from the indicator, and the time-horizon

to move in and out of the stock market
6
. Hence we need a formal test that would confirm or invalidate

the relevance of strict Fed model indicators. As mentioned earlier, a necessary condition is certainly

the stationarity of the indicator. An indicator whose realization points towards a unit-root process is

certainly not relevant: it means there are no forces that push the indicator back to equilibrium, and thus

past shocks have a permanent effect on its level: not very pleasant since our trading signal involves

comparing the indicator to the 0 level (or to any bands around 0, depending on how one defines a

trading signal). If past shocks have a permanent effect on the indicator, then comparing it to any fixed

band is irrelevant.

For each of the three different strict Fed model indicators mentioned we perform Augmented Dickey-

Fuller (ADF) tests and Philipps-Perron tests with daily and monthly data, for each of our 24 samples.

When the time-series is long enough, we also perform ADF tests on sub-samples. Table 1, 2 and 3 in

Annex recapitulate the results, reporting the MacKinnon p-values corresponding to the t-statistics
7
.

The results are that the null of a unit root is rejected, at a 10% significance level and for all three

indicators, for only four out of the 24 samples: the United States (S&P 500), Mexico, Italy and

Australia. In the most recent period, from 1993 to 2011, none of the three indicators pass the test for

the United States and the S&P 500: the tests indicate, for this subsample, very large p-values of more

than 0.40. Not surprisingly, when looking at monthly data it is precisely the same countries which pass

the tests. With only one exception (Canada), the relative strict Fed model indicator, that is, the second

and third one, which involves the quotient of Y by E/P in log form or in simple form
8
, passes much

more often the stationarity tests than the first absolute indicator, which assumes stationarity of the

absolute change level in yields Y-E/P.
9

6
This is a non-trivial problem: because of this infinite number of possible trading rules, one will always end up finding a rule which will

work in-sample (that is, ex-post). To conclude that the Fed model is valuable on the sole basis of such a finding would thus be

methodologically incorrect.
7

The lag for all the ADF tests was chosen as to maximize the Schwarz Information Criteria, with a maximum of up to 25 lags. Philipps-

Perron tests were performed using the Newey-West Bandwith to select the bandwith. Table 1 presents the result of the tests using daily, end

of the day data, whereas Table 2 and Table 3 present the monthly, end of the month, and average of the month results. Notice that looking at

both daily and monthly frequency adds really a new dimension to the problem, since the maximum lags used in ADF tests at daily frequency

being 25, these daily stationarity tests necessarily have a shorter-time horizon than the monthly ones, for which the time lag is at minimum

one month, and at maximum 25 months.
8

Of course, since (Y-E/P)/(E/P)=Y/(E/P) – 1 and that adding a constant does not change the results of the stationarity tests, this indicates that

changes relatively to the current level of earning yieds are usually more stationary than changes in the absolute levels.
9

Indeed, at both monthly and daily frequency the third Fed indicator is stationary for the United Kingdom, Germany, and Japan, whereas the

first indicator fails to satisfy stationarity in these three countries. All in all, it is now 7 out of 24 samples which pass the basic test of

stationarity at both the daily and monthly frequency if we look at the third indicator instead of the first. This still leaves 17 samples in which

the null of a unit-root process is not rejected, that is, the indicator seems to have a stochastic trend, hence behaving more like a random walk,

with no economic forces pushing it back to 0 when shocks makes it deviate from this assumed “fair” value.
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To conclude, for most markets, including the United States (S&P 500) from 1993 to March 2011,

the Dow Jones Industrial and the NASDAQ, the strict Fed model fails to pass the most basic test:

the so-called Fed indicator has probably a stochastic trend, hence its current level, partly due to

the accumulation of past previous shocks, is irrelevant to assess current the over or under-

evaluation of the stock market relative to bonds. Our results are thus in line with those of

Gwilym et al. (2001) and Asness (2003). The (strict) Fed model does not travel well, nor does it

fit the United States (S&P 500) for most recent periods, nor does it seem relevant for the other

US stock indexes.

Now the strict Fed model indicator seems stationary for the United State and S&P 500 for the whole

sample period, for Mexico, Italy and Australia. We can assess the stationarity of the strict Fed

indicator Y-E/P more precisely on each sub-sample by looking at rolling ADF tests. The statistical

results are detailed in the supporting documentation downloadable from the author website
10

.

They indicate that for some five-year periods, in particular the 2002 to 2008 period, the simple

strict Fed indicator Y-E/P is not stationary, suggesting it cannot have been a good indicator

during that period. The test with the relative strict Fed indicator gives similar results.

3. Estimated Linear Fed Models: performance evidence

Outline of the methodology

As coined in the introduction, a general Fed model long-term relation could have any other form than

a strict equality, in so far it relies on comparing the earnings-to-price ratio E/P to the earning yields Y.

A particular, yet more general case than a strict equality between the two ratios would be linear

general Fed models, in which the assumed long-term relationship is:

Y = b ∗ E/P + b2, with b>0 and b2 two constants

This linear relation could be interpreted in a way similar to those of general Fed model coined in the

introduction which takes into account perceived relative risks between bonds and stocks: for example,

the above relation with b2=0 would mean that stocks are deemed riskier than bonds if 0<b<1, and less

risky than bonds if b>1. A negative b would be contradictory to the Fed model as it implied opposite

dynamics for the earning yields and the government yields.

We study in this section the relevance of the linear general Fed model for the United States and the

Standard and Poor’s, using data from different frequencies, and within a co-integration theory

framework as defined by Engle and Granger (1987) and using maximum likelihood methods as

10
See the document “Additional supporting evidence related to the article:  ‘the validity and time-horizon of the Fed model: a co-integration

approach’”, downloadable from the author’s website: http://fabienecb.fr/menurapport2.html.
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defined by Johansen, Stock and Watson (1995). This allows to build various Vector Error Correcting

(VEC) models, whose merits as a quantitative version of the Fed model we assess by comparing the

results of their predictions to those of similar models without error-correcting terms, like those of a

simple Vector Autoregressive Models, in levels or in first difference, or to the naïve predictions of the

explained variable lagged one period.  The idea is to disentangle how much the Fed indicator actually

improves forecasts when compared to these different alternative models which do not contain any

long-term relationship between yields, earnings and stock market prices.

Visual inspection: a changing relation

The graphs below depicts the very strong (visual) relation between the government yield and the

earning yield of the S&P 500 over the whole sample period (graph on the left), and the price level of

the S&P 500 (graph on the right).

Figure 2: time series of Y, E/P and P for the US and the S&P 500.

Fig 2A: US government yields and S&P 500 Fig 2B: S&P 500 in level

A first remark is that by looking at shorter sub-sample, the relationship between the two series is far

from obvious. The graphs below represent scattered plots of the 10 year government bond yield

against the earnings ratio of the S&P 500, for six different periods. They were obtained by using

monthly data corresponding to the average of the daily observations of each month. For some period,

as for the 1985 to 1995 period, the two series seem to move together in the same direction, whereas for

other periods, for example the 1975 to 1985 period, there does not seem to be any clear pattern. For

the 2000 to 2011 period, the two series even seem inversely correlated, in plain contradiction with
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what the Fed model would predict, but in accordance with the “flight to safety” phenomenon, very

strong in that period: afraid of stock returns, investors would flee the stock market and bid government

bond prices up.

Figure 3: Scatter plots of Y and E/P for the US and the S&P 500 on different sub-samples

Fig 3A : 1963-1975 Fig 3B : 1975-1985

Fig 3C : 1985-1995 Fig 3D : 1995-2005

Fig 3E : 2000-2011 Fig 3F : 1963-2011
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Unit root tests for the government yield and the earning yield series

Johansen co-integration tests assume that the involved series are integrated of order one, hence we

have to make sure this is the case, otherwise the tests are meaningless. We thus apply unit root tests to

each of the two series Y and E/P. The detailed statistics results of these routine tests can be found on

the author’s website
11

.

Tests at different frequencies, and for different sub-periods

For the sample from the first of January 1963 to the 24 of May 2011, Johansen tests performed with

either daily, weekly or monthly data do not reject the null of no co-integration at the 10% significance

level, for any lag length selected between 1 and 25.
12

The table below reports the Trace statistics and

the Maximum Eigenvalue statistics of this test for the whole sample, together with the corresponding

MacKinnon-Haug-Michelis (1999) p-values:

Table 1A: Johansen Co-integration Rank Test: Trace statistics

Number of co-integration relationships

assumed in the null hypothesis of the test

Trace statistics 0.05 critical value p-value

None 11.12764 15.49471 0.2038

At most 1 1.807713 3.841466 0.1788

Table 1B: Johansen Co-integration Rank Test: Maximum eigenvalue statistics

Test of  the null of r co-integrating

relationships against the alternative of r+1

co-integrating relationships

Trace statistics 0.05 critical value p-value

None 9.319930 14.26460 0.2605

At most 1 1.807713 3.841466 0.1788

11
These results are reported in the Annex 4 of the document quoted in footnote 5, page 6.

12
For example, for daily data and allowing 4 lags, an intercept but no deterministic trend in the co-integrating relation and a trend in the

VAR gives a Trace statistics of 11.127 corresponding to a p-value of 0.2039 for the null hypothesis of no co-integrating relationship.
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Dismissing the results of the tests and using co-integration techniques (Engle-Granger two steps

method and Johansen maximum likelihood method) gives, unsurprisingly, inconsistent and unstable

results
13

.

Now looking at the trends for the two series (see first chart of Figure 2) it is clear that we can separate

our sample into two sub-samples so as to allow the Johansen test to capture the two deterministic

trends better: the first linear deterministic trend is positively sloping from 1963 to 1980 whereas the

second, from 1980 to 2011, has a negative slope.

We get, for the same tests as previously – in particular, using daily data – the following results for the

two periods:

Table 2A: Johansen Co-integration Rank Test for the 1963 to 1980 period: Trace statistics

Number of co-integration relationships

assumed in the null hypothesis of the test

Trace statistics 0.05 critical value p-value

None 8.220717 15.49471 0.4421

At most 1 0.104091 3.841466 0.7470

Table 2B: Johansen Co-integration Rank Test from 1963 to 1980 period: Maximum eigenvalue

statistics

Test of the null of r co-integrating

relationships against the alternative of r+1

co-integrating relationships

Trace statistics 0.05 critical value p-value

None 8.116626 14.26460 0.3670

At most 1 0.104091 3.841466 0.7470

Table 3A: Johansen Co-integration Rank Test for the 1980 to 2011 period: Trace statistics

Number of co-integration relationships

assumed in the null hypothesis of the test

Trace statistics 0.05 critical value p-value

None 15.99375 15.49471 0.0420

At most 1 1.100870 3.841466 0.2941

Table 3B: Johansen Co-integration Rank Test for the 1980 to 2011 period: Maximum eigenvalue

statistics

Test of the null of r co-integrating

relationships against the alternative of r+1

co-integrating relationships

Trace statistics 0.05 critical value p-value

None 14.89288 14.26460 0.0397

At most 1 1.100870 3.841466 0.2941

Results for both periods are robust relative to the frequency used. The difference between the two sub-

samples is striking: in the first sub-sample period the null of no co-integration is accepted with a high

��
See the document quoted in footnote 5, page 6.
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p-value of 0.44, whereas in the second the null of no co-integration is rejected at the 5% significance

level, for daily data, and at a 10% significance level for weekly and monthly data.

The tables below detail the results for the 1980 to 2011 period, presenting the Trace statistics and the

Maximum Eigenvalue statistics at each different frequency
14

.

Table 4A: Johansen Co-integration Rank Test for the 1980 to 2011 period: Trace statistics

Number of co-integration

relationships  assumed in the

null hypothesis of the test

Frequency of data used Trace

statistics

0.05 critical

value

p-value

None daily end of the day 15.99375 15.49471 0.0420

weekly end of the week 14.29764 15.49471 0.0751

weekly, daily average 14.01039 15.49471 0.0827

monthly end of the month 15.46071 15.49471 0.0506

monthly, daily average 15.83884 15.49471 0.0444

At most 1 daily end of the day 1.100870 3.841466 0.2941

weekly end of the week 1.915946 3.841466 0.1663

weekly, daily average 2.079140 3.841466 0.1493

monthly end of the month 1.910101 3.841466 0.1670

monthly, daily average 1.947226 3.841466 0.1629

Table 4B: Johansen Co-integration Rank Test for the 1980 to 2011 period: Maximum eigenvalue

statistics

Number of co-integration

relationships  assumed in the

null hypothesis of the test

Frequency of data used Trace

statistics

0.05 critical

value

p-value

None daily end of the day 14.89288 14.26460 0.0397

weekly end of the week 14.29764 15.49471 0.0751

weekly, daily average 11.93125 14.26460 0.1133

monthly end of the month 13.55061 14.26460 0.0646

monthly, daily average 13.89161 14.26460 0.0572

At most 1 daily end of the day 1.100870 3.841466 0.2941

weekly end of the week 1.915946 3.841466 0.1663

weekly, daily average 2.079140 3.841466 0.1493

monthly end of the month 1.910101 3.841466 0.1670

monthly, daily average 1.947226 3.841466 0.1629

So far, we made certain that our two series, the government bond yield and the earnings ratio, were

integrated of order one, using both augmented Dickey-Fuller tests and Phillips and Perron tests. We

now see there is also strong evidence of co-integration for the 1980 to 2011 period, in particular at the

daily and at the monthly frequency. We are thus in a position to follow the Johansen method for

writing down a Vector Error Correction model for the two variables Y and E/P.  We chose to build a

VEC with 4 lags
15

, in order to get both a parsimonious model yet uncorrelated residuals.

The Johansen maximum likelihood methodology gives the following co-integration relationship:

��
The p-values suggest there is more evidence of co-integration at the daily level than at lower frequency levels. This is in line with the

results of the study of the strict Fed indicators of the fourth section, where the p-value for stationarity of the strict Fed indicators were, most

of the time, higher for daily frequencies than for monthly.
��

The co-integration relation seems rather stable with respect to the number of lags selected. For example, writing a VEC with 25 lags give

the long term relationship: Y= 1.84161717598*E/P + 4.70640290327
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Y = 1.8519020924*E/P + 4.77205658219

Interestingly – and surprisingly – following Engle-Granger method for the same period gives a

different co-integrating relationship:

Y = 0.900439413701*E/P + 1.30149920728

Hence the two usual methods for estimating a VEC do not, in our case, give comparable results: the

maximum likelihood method to estimate the long-term relationship used in the Johansen approach

gives radically different results than the ordinary least square method used by Engle and Granger.

Now, the historical stability of the relation is another problem, and so is its economic interpretation.

Concerning the Johansen estimation of the long-term relationship, it is rather dubious that in the long

term an increase of 1 unit of the earning to price ratio would be followed by an increase of 1.84 unit of

the ten-year government yield. The Engle-Granger method
16

makes more sense economically: an

increase of one unit of the earnings ratio would translate, at equilibrium, into an increase of 0.9 unit

for the yield Y. If we restrict our sample from 01/05/2011 to 25/05/2011, estimating the VEC using

the Johansen approach gives the following relation:

Y = - 0.775192725401*E/P - 8.54556842774

Whereas the Engle-Granger approach gives the following:

Y = -0.601155146767*E/P + 7.59160572346

The change of sign shows how much the “long term relationship” depends on the sample. This result

confirms our visual inspection of the scattered plots in the beginning of this section. Of course, there

could be many possible structural factors explaining this change of the relationship. But maintaining

that there is a stable relationship between earnings ratio and yield, as does the Fed model, is contrary

to evidence. Moreover, the sign is the opposite of what the Fed model suggests. This could be the

effect of the so-called “flight to safety” where investors sell stocks to buy bonds, and hence, if

earnings are more or less constant, E/P would go up while Y would go down. But if this explanation

could hold for relatively short periods of stock market distress, it is hard to see why it would be the

case for the whole first January 2000 to 24 March 2011 period.

Historical stability of the long-term relationship

As noted earlier through visual inspection of the scattered plots, and in the previous paragraph, the

long-term relationship does not seem particularly stable from an historical perspective. Table 5 below

indicates the different long-term relationship of VEC models with 9 lags estimated during the

mentioned period (the results are quite stable with respect to the number of lags):

Table 5: co-integration relationship estimations, with associated speed of adjustment

�6
Recall the first step of Engle-Granger is a simple an ordinary least square regression, as opposed to Johansen maximum likelihood

approach.
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Series Co-integrating relation Y=-b.E/P-b2 Speed of adjustment17

b b2 of Y of E/P

1/01/1980 to

1/01/1985

-0.273985 -9.400664 -0.002821 0.007262

1/01/1985 to

1/01/1990

-1.427755 1.260989 0.001691 0.004768

1/01/1990 to

1/01/1995

-1.129606 -1.494971 -0.003522 0.001464

1/01/1995 to

1/01/2000

0.029319 -6.182875 -0.004146 0.001351

1/01/2000 to

1/01/2005

1.087241 -9.775998 -0.008214 -0.004656

1/01/2005 to

1/01/2010

1.078404 -10.68921 -0.004732 -0.002102

1/01/2005 to

24/05/2011

1.521183 -13.30656 -0.002583 -0.003555

1/01/1980 to

24/05/2011

-1.922247 5.221106 0.000127 0.000876

The “long-term” relationship is very dependant of the sample selected, and in some cases the series

involved does not even error-correct in the estimated VEC. A possible way to visually examine the

stability (or the instability) of such a changing relationship is to plot the coefficients of successive

(rolling) estimations of the long-term relationship
18

.

We conclude that contrary to what asserts the Fed model, the long-term relationship is not

stable.  In particular the sign of b, for the most recent periods, is the opposite of what theory

underlying the Fed model would suggest.

Hence there is no evidence of a stable relationship between earnings yield and bond yields. We now

turn to the evaluation of the general linear Fed model as a predictive tool. Could the Fed model,

despite the evidence of instability in the relationship, be used as a predictive tool for timing the stock

market? We will, in particular, look if allowing the long term relationship to change continually gives

better forecasts than those of other, simpler models.

In sample evaluation of the historical predictive power of the model

We evaluate, on historical data, the predictive power of the above VEC model for the earning price

ratio and the government yield. To do so we compare our VEC model with other models, in particular

with the simple model obtained by lagging the explained variable itself, which corresponds to naïve

predictions one step ahead.

There is no unanimity relatively to knowing whether or not VAR models can be written in level for

non-stationary models. Sims (1980) and Sims, Stocks and Watson (1990) recommended against

differencing even if the variables contain a unit root. We compare our VEC model with such a VAR in

level, with the same number of lags. We use Root Mean Square Errors (RMSE) and the number of

correctly predicted directions of change to compare these models.

��
The speed of adjustment is the coefficient in front of the long term relationship in the VEC obtained following Johansen methodology.

The higher it is, the more impact the long-term relationship.
�8

See the document quoted in footnote 5, page 6.
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Now there are two possibilities for comparing these models on different sub-samples: one can either

estimate the models a single time for the whole sample, from the first of January 1980 to the 24 of

March 2011 and then look at RMSE and correctly predicted changes for different sub-samples (Table

6), or re-estimate the coefficients of the models for each sub-sample under study (Table 8).

Table 6: models were estimated using the whole 01/01/1980 to 24/05/2011 period

Series: Y VEC

model

VAR

model in level

Lagged variable VEC

model

VAR

model in level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

1/01/1980 to

1/01/1985

0.198081 0.198116 0.198154 623 629 786

1/01/1985 to

1/01/1990

0.197379 0.197364 0.197453 602 605 759

1/01/1990 to

1/01/1995

0.203514 0.203502 0.203507 619 641 772

1/01/1995 to

1/01/2000

0.205790 0.205798 0.205822 632 630 768

1/01/2000 to

1/01/2005

0.204308 0.204312 0.204301 633 624 755

1/01/2005 to

1/01/2010

0.182645 0.182641 0.182695 636 632 786

1/01/2005 to

24/05/2011

0.160218 0.160216 0.160260 801 788 984

1/01/1980 to

24/05/2011

0.067971 0.067979 0.068068 3910 3917 4822

Series: E/P VEC

model

VAR

model in level

Lagged variable VEC

model

VAR

model in level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

1/01/1980 to

1/01/1985

0.203602 0.203670 0.203885 648 641 786

1/01/1985 to

1/01/1990

0.203703 0.203656 0.203876 596 595 739

1/01/1990 to

1/01/1995

0.203752 0.203743 0.203729 575 578 748

1/01/1995 to

1/01/2000

0.203760 0.203748 0.203739 641 645 789

1/01/2000 to

1/01/2005

0.203672 0.203634 0.203675 608 609 747

1/01/2005 to

1/01/2010
0.203720 0.203868 0.204408 571 573 735

1/01/2005 to

24/05/2011

0.180216 0.180354 0.180758 742 750 961

1/01/1980 to

24/05/2011
0.081274 0.081321 0.081684 3810 3818 4768

We can see that the Fed model performs poorly compared to the lagged variable or a simple VAR in

level. We would like to be more precise and assess the usefulness of the co-integrating relationship in

helping to improve the forecast. A simple idea would be to compare our VEC model with a VAR in

difference with the same number of lags to assess if the error correcting term really brings any

additional information to the forecast. Hence, the only explanatory variable that the VEC contains and

that the VAR does not contain is the error-correcting term, that is, the estimated linear long term Fed

relationship. The following table, for each sample period, presents the obtained results:

Table 7: models were estimated using the whole 01/01/1980 to 24/05/2011 period

Series Y E/P
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VEC VAR in difference VEC VAR in difference

1/01/1980 to

1/01/1985

0.198081 0.198084 0.203602 0.203689

1/01/1985 to

1/01/1990

0.197379 0.197382 0.203703 0.203744

1/01/1990 to

1/01/1995

0.203514 0.203514 0.203752 0.203744

1/01/1995 to

1/01/2000

0.205790 0.205791 0.203760 0.203744

1/01/2000 to

1/01/2005

0.204308 0.204305 0.203672 0.203689

1/01/2005 to

1/01/2010

0.182645 0.182644 0.203720 0.203744

1/01/2005 to

24/05/2011

0.160218 0.160217 0.180216 0.180224

1/01/1980 to

24/05/2011

0.067971 0.067972 0.081274 0.081326

If we use the RMSE criteria to assess performance, then the VEC model outperforms both the VAR in

level and the VAR in difference for the whole sample period (see last column of Table 6 and 7).

Nevertheless we note that on sub-samples it only outperforms the VAR in about half of the sub-

samples. Moreover, the amount by which it outperforms the VAR on the whole period does not seem

very large.

Overall, the Fed model performs poorly compared to similar models. The changing nature of the

VEC long term relationship could explain such poor performance. If we re-estimate the models

for each of the sub-sample period we find the results presented in Table 8 and 9:

Table 8: models were estimated on each sub-sample period

Series: Y VEC

model

VAR

model in level

Lagged variable VEC

model

VAR

model in level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

1/01/1980 to

1/01/1985
0.197088 0.197144 0.197368 610 613 786

1/01/1985 to

1/01/1990

0.196417 0.196394 0.196677 598 598 759

1/01/1990 to

1/01/1995
0.202589 0.202594 0. 202636 666 656 772

1/01/1995 to

1/01/2000

0.204806 0.204822 0.204891 620 625 768

1/01/2000 to

1/01/2005
0.203380 0.203380 0.203437 632 628 755

1/01/2005 to

1/01/2010

0.181964 0.182077 0.182209 642 636 786

1/01/2005 to

24/05/2011
0.159562 0.159652 0.159784 802 800 984

1/01/1980 to

24/05/2011

0.067971 0.067979 0.068068 3910 3917 4822

Series: E/P VEC

model

VAR

model in level

Lagged variable VEC

model

VAR

model in level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

1/01/1980 to

1/01/1985
0.202566 0.202639 0.203120 644 640 786

1/01/1985 to

1/01/1990

0.202722 0.202725 0.203124 588 594 739

1/01/1990 to

1/01/1995
0.202787 0.202794 0.202859 592 590 748

1/01/1995 to 0.202772 0.202770 0.202798 650 641 789
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1/01/2000

1/01/2000 to

1/01/2005

0.202737 0.202746 0.202808 605 604 747

1/01/2005 to

1/01/2010

0.202977 0.203157 0.203974 583 559 735

1/01/2005 to

24/05/2011

0.179558 0.179729 0.180335 746 743 961

1/01/1980 to

24/05/2011

0.081274 0.081321 0.081684 3810 3818 4768

Our Vector Error Correcting model, with a different, changing “long term” relationship for each

subsample, now performs better than the VAR in level for most of the time. Yet, it is important to note

that the lagged variable better predicts the direction changes of the explained variable than both

models. Comparing our VEC to a VAR in first difference gives the following results:

Table 9: models were estimated on each sub-sample period

Series Y E/P

VEC VAR in difference VEC VAR in difference

1/01/1980 to

1/01/1985

0.197088 0.197107 0.202566 0.202783

1/01/1985 to

1/01/1990

0.196417 0.196427 0.202722 0.202842

1/01/1990 to

1/01/1995

0.202589 0.202602 0.202787 0.202789

1/01/1995 to

1/01/2000

0.204806 0.204825 0.202772 0.202775

1/01/2000 to

1/01/2005
0.203380 0.203404 0.202737 0.202745

1/01/2005 to

1/01/2010

0.181964 0.181985 0.202977 0.203013

1/01/2005 to

24/05/2011
0.159562 0.159576 0.179558 0.179617

1/01/1980 to

24/05/2011

0.067971 0.067972 0.081274 0.081326

Nevertheless, the amount by which the VEC, and hence the Fed model, outperforms a simple VAR in

difference seems small and possibly only due to the fact that in the OLS used to estimate the VEC we

have one more explanatory variable than in the corresponding VAR (the error correcting term). One

should try to factor out this purely mechanical effect of more explanatory variables before asserting

the estimated long term relationship improves the forecasts.

To detangle the real effect of the error correcting term from the purely mechanical effect of improving

the forecast by having one explanatory variable more in the VEC than in the VAR, it could be useful

to allow one more lag to the VAR. Unfortunately this solution increases by two the number of

explanatory variables of the VAR, and not by one. Hence the results would be now biased toward

finding that the VAR gives better prediction. A way to diminish that bias would be to allow more lags

for both models, which will make the one more explanatory variable of the VAR less important.

Hence we allow 10 lags in the VAR and only 9 in the VEC, which implies the OLS for the VAR has

one more explanatory variable than for the VEC. Table 10 below reports the results:
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Table 10: comparison between VEC and VAR

Series Y E/P

VEC VAR in difference VEC VAR in difference

1/01/1980 to

1/01/1985

0.197166 0.197184 0.202755 0.202957

1/01/1985 to

1/01/1990

0.196685 0.196692 0.202942 0.203016

1/01/1990 to

1/01/1995

0.202686 0.202699 0.202800 0.202794

1/01/1995 to

1/01/2000
0.203944 0.203963 0.201959 0.201959

1/01/2000 to

1/01/2005

0.203228 0.203250 0.202602 0.202598

1/01/2005 to

1/01/2010
0.181109 0.181127 0.202043 0.201959

1/01/2005 to

24/05/2011

0.158848 0.158854 0.178792 0.178775

1/01/1980 to

24/05/2011

0.067889 0.067887 0.081196 0.081244

For the each subsample period, the VEC model is still the best for predicting the earning to price ratio

E/P, but the evidence is much more mixed than in the previous table. After all, the Fed model pretends

the long-term relationship (which changes on each of the 7 sub-samples indicated here) is relevant for

predicting the E/P ratio, and hence the prices of stocks, since the earnings we are using here are

backward looking (trailing 12 months earning are already known to the market). What we actually

observe is that the VAR in first difference forecasts as often as the VEC the E/P ratio. And the Fed

model seems better to forecasts the yield Y on each sub-sample (because the long-term relationship is

re-estimated on each sample period here), but not on the whole sample
19

(suggesting, again, an instable

relationship over longer horizons).

We conclude that, at a daily frequency, the VAR in first difference or the VEC are about

equivalent models. At the daily frequency the error correcting term does not seem to add much

to the prevision of the forecast. Moreover, to predict the direction of the changes in the variables

(increase or decrease), both models do worse than the lagged variable itself.

Out-of-sample evaluation of the historical predictive power of the model

Now all the previous historical assessments of the models were done in-sample: although no

information available at time t or after is given to the model to predict values at time t, the coefficients

of the co-integrating relationship and of the VEC model itself are estimated using the whole sample

period (that we occasionally also changed to get the results for Table 8 and 9). Hence these are in-

sample predictions. How does the model perform for out-of-sample predictions?

#$
In other words, a single estimate of the long term relationship completely deprive the Fed model from its predictive power: the

relationship needs to be estimated more often, on smaller sub-sample.
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To get an idea of the predictive power, out-of-sample, of a VEC model between the Y and E/P series

we obtained Table E and F.

To get the first line of our tables, we first estimate the two models from the date in the first column,

which is 01/01/1980, to the 1/1/1990. Then we use the model to predict out-of-sample estimates for

the next date, 2/1/1990. We then re-estimate the model from 01/01/1995 to 2/1/1990 to get next

forecast, for 3/1/2000. We are thus assured not to “peer” into the future, and that, at the same time, to

use all the information available up to and including time t-1 to make our predictions for time t. These

can thus translate into practical, concrete models for predicting future movements of the explained

variables. We proceed similarly with the other dates, starting always our estimation on the first date

for a 10 year period before starting to predict for the next (daily) period.

Here too, we can define the residuals as the difference between the realised value and the predicted

value and compare them with the residuals obtained from a “naïve” forecast (the variable itself lagged

one period), or to those of a VAR, either in level or in first difference. The results are presented in the

Table 11 and 12 below:

Table 11: out-of-sample results with re-estimation of all models at each step

Series: Y VEC

model

VAR

model

In level

Lagged variable VEC

model

VAR

model

In level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

Since 1/01/1980 0.052259 0.052204 0.052249 2700 2696 3274 / 7817

Since 1/01/1990 0.069018 0.069090 0.069254 1454 1434 1735 / 4164

Since 1/01/2000 0.254042 0.254046 0.254086 161 149 194 / 512

Series: E/P VEC

model

VAR

model

In level

Lagged variable VEC

model

VAR

model

In level

Lagged variable

Indicator: RMSE RMSE RMSE Correct changes Correct changes Correct changes

Since 1/01/1980 0.067341 0.067411 0.067686 2555 2571 3241

Since 1/01/1990 0.091924 0.092067 0.092802 1343 1363 1705

Since 1/01/2000 0.264602 0.264565 0.264299 171 174 223

Table 12: out-of-sample results with re-estimation of all models at each step

Series Y E/P

VEC VAR in difference VEC VAR in difference

from 1/01/1980 0.052259 0.052258 0.067341 0.067247

from 1/01/1990 0.069018 0.069021 0.091924 0.091987
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from 1/01/2000 0.254042 0.254041 0.264602 0.264618

Of course, this could also be done for other sub-samples
20

.

Estimating the long term relationship over the lagged 5 year period seems to give better results

for predicting the earning yield at daily frequency, but does worse for the bond yield. Overall, at

daily frequencies, the Fed model does not perform better than a simple VAR in first difference,

in particular when the mechanical effect of a better fit due to one more explanatory variable is

factored out by the addition of one more lag for the VAR than for the Fed model.

4. The time-horizon of linear Fed model: how short is the long-run?

In this section we first determine the period where a linear “Fed relationship” seems stable enough,

and then try to determine the frequency at which the Fed model is relevant using daily, weekly and

monthly data. The same methodology, which consists in comparing results obtained from a VEC

model to a similar VAR model in first difference, is used. Because the methodology is similar to the

one already described in Section 3 we do not fully describe the different statistics and steps again. The

interested reader can find a full description on the author’s webpage
21

, Annex 6. Hence this section

only recapitulates the main findings and the references to the additional documents of the detailed

study.

Estimating a linear relationship between earning yields and bond yields for the US indicates that the

relationship is highly unstable over the 1980 to present day period. More precisely, it seems to be

highly unstable since 2001 (part A of Annex 6).

First, a log term linear relationship between earning yield and bond yield does not exist besides the

1980 to 2000 period. For example, in the most recent period (from 2001 onward) there is no evidence

of co-integration between the two variables. Nevertheless, at monthly frequency the short-term

interactions are significant and help improve the goodness-of-fit as evaluated by RMSE, MSAV or the

number of correct changes, compared to the lagged variable (part D of Annex 6).

Restricting to the 1980 to 2000 period, the Fed model cannot be observed at daily frequency as a

“long-term relationship”, although short term dynamics between the earning yield and the bond yield

exists (part B of Annex 6). At the weekly frequency, the Fed model is only useful for explaining the

earnings ratio, and not to the bond yield (Part E of Annex 6). At the monthly frequency, and for the

1980 to 2000 period, there is indeed evidence that assuming and estimating a long-term relationship

between the earning yield and the bond yield does improve the forecasts (Part C of Annex 6).

()
See the Annex 7 of document quoted in footnote 5, page 6.

(*
See  the document quoted in footnote 5, page 6.
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5. Conclusion and direction for further research

In accordance with other studies, we found that the Fed model is based on rather limited empirical

evidence. Concerning its geographical scope, it does not “travel” well. Even restricted to the US, it

does not work for other stock indexes than the S&P 500 and the relevant historical scope is confined

within the 1980 to 2000 period. In particular, although co-movements in the earning yields and the

bond yield existin the 2001 to 2011 period, these movements are short-term in nature, in the sense that

they are captured by immediate feedback when a VEC model is estimated, and do not contribute to the

(long-term) error correcting term of the VEC in any meaningful way. In particular, building a VEC

gives less precise results for forecasting than a VAR in first difference: the long-term relationship is a

hindrance more than a useful tool.

Concerning its frequencies, we found that the Fed model, during the 1980 to 2000 period, does not

have any predictive power at the daily frequency. It starts having some predictive power for the

earning yield (but not for the bond yield) at the weekly frequency, and for both the earning yield and

the bond yield at monthly frequency. Although we use different sub-samples as a robustness-check for

checking the better goodness-of-fit of the Fed model compared to simple similar models which do not

contain a long-term relationship, a word of caution is warranted by the very sample-dependence

observed of the Fed model in general.
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ANNEXES

LIST 1: Stock exchange indices description

INDU Index (US): the Dow Jones Industrial Average is a price-weighted average of 30 blue-chip stocks that

are generally the leaders in their industry.

01/01/1963

SPX Index (US): the Standard and Poor's 500 Index is a capitalization-weighted index of 500 stocks. The

index is designed to measure performance of the broad domestic economy through changes

in the aggregate market value of 500 stocks representing all major industries.

02/05/1993

CCMP Index  (US): The NASDAQ Composite Index is a broad-based capitalization-weighted index of stocks

in all three NASDAQ tiers: Global Select, Global Market and Capital Market.

01/01/1995

SPTSX Index (Canada): The S&P/Toronto Stock Exchange Composite Index is a capitalization-weighted index

designed to measure market activity of stocks listed on the TSX.

01/06/1994

MEXBOL Index
(Mexico):

The Mexican IPC index (Indice de Precios y Cotizaciones) is a capitalization weighted

index of the leading stocks traded on the Mexican Stock Exchange.

01/08/2001

IBOV Index (Brazil): The Bovespa Index is a total return index weighted by traded volume and is comprised of

the most liquid stocks traded on the Sao Paulo Stock Exchange.

01/01/2007

SXXE Index (Euro

Area):

The EURO STOXX (Price) Index is a capitalization-weighted index which includes

countries that are participating in the EMU.

01/01/2002

SXXP Index (Euro

Area):

The STOXX Europe 600 (Price) Index is a broad based capitalization-weighted index of

European stocks designed to provide a broad yet liquid representation of companies in the

European region.

01/01/2002

SX5E Index (Euro

Area):

The EURO STOXX 50 (Price) Index is a free-float market capitalization-weighted index of

50 European blue-chip stocks from those countries participating in the EMU. Each

component's weight is capped at 10% of the index's total free float market capitalization.

01/05/2001

UKX Index (UK): The FTSE 100 Index is a capitalization-weighted index of the 100 most highly capitalized

companies traded on the London Stock Exchange. The equities use an investibility

weighting in the index calculation.

01/01/2002

CAC Index (France): The CAC-40 Index is a narrow-based, modified capitalization-weighted index of the 40

highest market caps on the Paris Bourse.

01/06/2001

DAX Index  (Germany): The German Stock Index is a total return index of 30 selected German blue chip stocks

traded on the Frankfurt Stock Exchange.  The equities use free float shares in the index

calculation.

01/04/1997

IBEX Index  (Spain): The IBEX 35 is the official index of the Spanish Continuous Market.  The index is

comprised of the 35 most liquid stocks traded on the Continuous market.  It is calculated,

supervised and published by the Sociedad de Bolsas.

01/04/1993

FTSEMIB (Italy): The Index will consist of the 40 most liquid and capitalised stocks listed on the Borsa 01/01/2004
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Italiana. In the FTSE MIB Index foreign shares will be eligible for inclusion.

AEX Index (Sweeden): The AEX-Index is a free-float adjusted market capitalization weighted index of the leading

Dutch stocks traded on the Amsterdam Exchange. The index was adjusted to the Dutch

Guilder fixing rate.

01/01/2004

OMX (Sweeden): The OMX Stockholm 30 Index is a capitalization-weighted index of the 30 stocks that have

the largest volume of the trading on the Stockholm Stock Exchange. The equities use free

float shares in the index calculation.

01/01/1994

SMI Index

(Switzerland):

The Swiss Market Index is a capitalization-weighted index of the 20 largest and most liquid

stocks of the SPI universe.  It represents about 85% of the free- float market capitalization

of the Swiss equity market.

01/01/2002

NKY Index (Japan): The Nikkei-225 Stock Average is a price-weighted average of 225 top-rated Japanese

companies listed in the First Section of the Tokyo Stock Exchange. The Nikkei Stock

Average was first published on May 16, 1949, where the average price was ¥176.21 with a

divisor of 225.

01/02/2000

TPX Index (Japan): The TOPIX, also known as the Tokyo Stock Price Index, is a capitalization weighted index

of all companies listed on the First Section of the Tokyo Stock Exchange. The index is

supplemented by the sub-indices of the 33 industry sectors.

01/04/1993

SHASHR Index (China): The Shanghai A-Share Stock Price Index is a capitalization-weighted index. The index

tracks the daily price performance of all A-shares listed on the Shanghai Stock Exchange

that are restricted to local investors and qualified institutional foreign investors.

01/06/2005

AS51 Index (Australia): The S&P/ASX 200 measures the performance of the 200 largest index-eligible stocks listed

on the ASX by float-adjusted market capitalization. Representative, liquid and tradable, it

is widely considered Australia's preeminent benchmark index. The index is float-adjusted.

The index was launched in April 2000.

01/01/2000

NB: The unavailability of data in the Bloomberg series often came from the earning yield. The

availability of the dividend yield, or of the dividend payout ratio, is even worse.

TABLE 1: ADF and Philipps-Perron test
22

s with daily data for Fed indicators

Y-E/P Log(Y)-log(E/P) Y/(E/P)

Sample starts

in

ADF P-P ADF P-P ADF P-P

US and SPX 01/01/1963 -2.96

0.03

-2.87

0.04

-2.44

0.13

-2.42

0.13

-2.68

0.07

-2.65

0.08

US and SPX 01/01/1993 -1.51

0.53

-1.50

0.53

-1.41

0.57

-1.43

0.56

-1.64

0.45

-1.55

0.51

US and SPX 01/01/2001 -2.08

0.25

-2.09

0.24

-1.99

0.29

-2.03

0.27

-2.27

0.18

-2.21

0.20

US and

INDU

02/05/1993 -2.38

0.15

-1.93

0.31

-2.21

0.20

-1.95

0.30

-2.07

0.25

-1.92

0.32

US and

CCMP

01/01/1995 -2.03

0.27

-2.04

0.26

-2.11

0.24

-3.28

0.01

-11.77

0.00

-1.87

0.00

CA and

SPTSX

01/06/1994 -2.52

0.11

-2.42

0.13

-2.05

0.26

-1.97

0.29

-2.37

0.14

-2.28

0.17

MX and

MEXBOL

01/08/2001 -4.35

0.00

-4.00

0.00

-4.38

0.00

-4.14

0.00

-4.44

0.00

-4.29

0.00

BR and

IBOV

01/01/2007 -2.06

0.26

-1.95

0.31

-1.78

0.38

-1.74

0.40

-1.61

0.47

-1.57

0.49

EU and

SXXE

01/01/2002 -2.01

0.28

-1.91

0.32

-1.98

0.29

-1.92

0.31

-2.62

0.08

-2.57

0.09

EU and

SXXP

01/01/2002 -2.08

0.24

-1.98

0.29

-1.97

0.29

-1.91

0.32

-2.39

0.14

-2.28

0.17

EU and 01/05/2001 -1.79 -1.58 -1.69 -1.67 -2.96 -2.96

22
The first line of each cell is the t-statistics (either from an ADF tests whose lag is selected by optimizing the Schwarz Information

Criterion, with a maximum lag of 25, or a Phillips-Perron test, using the Newest-West Bandwith test). Data used is daily, end-of-the day data

(closing prices).
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SX5P 0.38 0.48 0.43 0.44 0.03 0.03

UK and

UKX

01/01/2002 -2.54

0.10

-2.29

0.17

-2.31

0.16

-2.13

0.23

-2.85

0.05

-2.61

0.08

FR and CAC 01/06/2001 -2.70

0.07

-2.44

0.13

-2.44

0.12

-2.26

0.18

-2.53

0.10

-2.39

0.14

DE and

DAX

01/02/1997 -2.30

0.16

-2.30

0.16

-2.22

0.19

-2.24

0.19

-3.42

0.01

-3.52

0.00

DE and

DAX

01/01/2001 -2.15

0.22

-2.16

0.22

-2.14

0.22

-2.15

0.22

-3.17

0.02

-3.26

0.01

ES and

IBEX

01/04/1993 -2.87

0.04

-2.95

0.03

-2.06

0.26

-1.91

0.32

-2.65

0.08

-2.38

0.14

ES and

IBEX

01/01/2001 -1.98

0.29

-1.71

0.42

-2.15

0.22

-1.93

0.31

-2.59

0.09

-2.49

0.11

IT and

FTSEMIB

01/01/2004 -2.91

0.043

-2.88

0.047

-3.32

0.0139

-3.28

0.0158

-4.06

0.0011

-4.05

0.0012

SE and

OMX

01/01/1994 -2.95

0.039

-2.91

0.04

-1.92

0.32

-1.92

0.32

-2.18

0.21

-2.17

0.21

CH and SMI 01/01/2002 -1.76

0.39

-1.75

0.40

-2.21

0.20

-2.04

0.26

-3.22

0.018

-3.27

0.016

JP and NKY 01/02/2000 -2.51

0.11

-2.38

0.14

-2.78

0.06

-2.82

0.055

-3.41

0.0104

-3.46

0.0089

JP and TPX 01/04/1993 -1.67

0.44

-1.57

0.49

-2.92

0.04

-2.94

0.04

-7.21

0.00

-7.99

0.00

CN and

SHASHR

01/06/2005 -1.2

0.67

-1.30

0.62

-1.13

0.70

-1.25

0.65

-1.13

0.70

-1.19

0.67

AU and

AS51

01/01/2000 -3.26

0.016

-3.19

0.02

-3.07

0.02

-2.98

0.03

-3.27

0.016

-3.15

0.02

TABLE 2: ADF and Philipps-Perron tests
23

with monthly (end of the month) data for Fed

indicators

Y-E/P Log(Y)-log(E/P) Y/(E/P)

Sample starts

in

ADF P-P ADF P-P ADF P-P

US and SPX 01/01/1963 -2.90

0.04

-2.81

0.05

-2.51

0.11

-2.35

0.15

-2.73

0.06

-2.12

0.23

US and SPX 01/01/1993 -1.65

0.45

-1.62

0.46

-1.59

0.48

-1.55

0.50

-1.61

0.47

-1.59

0.48

US and SPX 01/01/2001 -2.21

0.20

-2.22

0.20

-2.18

0.21

-2.16

0.22

-2.22

0.19

-2.05

0.26

US and

INDU

02/05/1993 -1.53

0.51

-1.85

0.35

-1.52

0.52

-1.84

0.35

-2.02

0.27

-1.79

0.38

US and

INDU

01/01/2001 -1.87

0.34

-1.72

0.41

-1.73

0.41

-1.73

0.40

-2.06

0.26

-1.80

0.37

US and

CCMP

01/01/1995 -2.16

0.21

-2.15

0.22

-1.40

0.57

-1.40

0.57

-0.94

0.77

-1.68

0.43

US and

CCMP

01/01/2001 -1.48

0.54

-1.48

0.54

-1.44

0.55

-1.44

0.56

-1.90

0.33

-1.92

0.32

CA and

SPTSX

01/06/1994 -2.83

0.05

-2.65

0.08

-1.81

0.37

-2.15

0.22

-2.18

0.21

-2.38

0.14

MX and

MEXBOL

01/08/2001 -4.04

0.0017

-4.01

0.0017

-4.10

0.0014

-3.97

0.0021

-4.14

0.0012

-4.10

0.0014

BR and

IBOV

01/01/2007 -1.81

0.37

-2.00

0.28

-1.62

0.46

-1.88

0.38

-1.51

0.51

-1.90

0.32

EU and

SXXE

01/01/2002 -1.85

0.35

-1.82

0.36

-1.90

0.32

-1.80

0.37

-1.76

0.39

-2.32

0.16

EU and

SXXP

01/01/2002 -1.92

0.31

-1.90

0.33

-1.89

0.33

-1.90

0.32

-2.67

0.08

-2.19

0.20

EU and

SX5P

01/05/2001 -1.08

0.72

-1.39

0.58

-1.13

0.70

-1.56

0.49

-1.88

0.33

-2.84

0.054

UK and

UKX

01/01/2002 -2.15

0.22

-2.02

0.27

-1.94

0.30

-2.30

0.17

-3.59

0.0069

-2.97

0.03

FR and CAC 01/06/2001 -2.23

0.19

-2.37

0.15

-2.08

0.25

-2.24

0.19

-2.21

0.20

-2.30

0.17

23
The first line of each cell is the t-statistics (either from an ADF tests whose lag is selected by optimizing the Schwarz Information

Criterion, with a maximum lag of 25, or a Phillips-Perron test, using the Newest-West Bandwith test). Data used is daily, end-of-the day data

(closing prices).
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DE and

DAX

01/02/1997 -2.03

0.27

-2.28

0.17

-2.14

0.22

-2.48

0.12

-3.27

0.0178

-3.64

0.0059

DE and

DAX

01/01/2001 -1.87

0.34

-2.03

0.27

-2.05

0.26

-2.05

0.26

-3.04

0.0337

-3.33

0.015

ES and

IBEX

01/04/1993 -1.53

0.51

-1.62

0.46

-1.72

0.41

-1.71

0.42

-1.97

0.29

-1.86

0.34

ES and

IBEX

01/01/2001 -1.61

0.47

-1.68

0.43

-1.93

0.31

-1.89

0.33

-2.04

0.26

-2.11

0.23

IT and

FTSEMIB

01/01/2004 -2.56

0.104

-2.65

0.08

-2.65

0.08

-2.77

0.65

-2.85

0.054

-2.92

0.046

SE and

OMX

01/01/1994 -2.31

0.16

-3.00

0.03

-1.80

0.37

-1.97

0.29

-2.11

0.23

-2.27

0.18

CH and SMI 01/01/2002 -1.55

0.50

-1.84

0.35

-1.85

0.35

-1.86

0.34

-1.84

0.35

-2.47

0.12

JP and NKY 01/02/2000 -2.34

0.15

-2.41

0.14

-2.98

0.039

-3.05

0.03

-5.29

0.00

-3.58

0.007

JP and TPX 01/04/1993 -1.50

0.52

-1.53

0.51

-1.85

0.35

-2.48

0.12

-6.10

0.00

-7.92

0.00

CN and

SHASHR

01/06/2005 -1.91

0.32

-1.79

0.37

-1.44

0.55

-1.87

0.34

-1.43

0.55

-1.84

0.35

AU and

AS51

01/01/2000 -3.22

0.020

-3.29

0.017

-3.51

0.009

-3.35

0.014

-4.18

0.001

-3.57

0.007

TABLE 3: ADF and Philipps-Perron tests
24

with monthly (average of the month) data for Fed

indicators

Y-E/P Log(Y)-log(E/P) Y/(E/P)

Sample starts

in

ADF P-P ADF P-P ADF P-P

US and SPX 01/01/1963 -2.90

0.04

-2.81

0.05

-2.51

0.11

-2.35

0.15

-2.73

0.06

-2.12

0.23

US and SPX 01/01/1993 -1.58

0.48

-1.60

0.47

-1.55

0.50

-1.54

0.50

-1.52

0.52

-1.56

0.50

US and SPX 01/01/2001 -2.26

0.18

-2.23

0.19

-2.23

0.19

-2.17

0.21

-2.29

0.17

-2.04

0.26

US and

INDU

02/05/1993 -1.53

0.51

-1.85

0.35

-1.52

0.52

-1.84

0.35

-2.02

0.27

-1.79

0.38

US and

INDU

01/01/2001 -1.84

0.35

-1.79

0.38

-1.70

0.42

-1.70

0.42

-1.67

0.44

-1.76

0.39

US and

CCMP

01/01/1995 -2.18

0.21

-1.94

0.30

-1.24

0.65

-1.29

0.62

-1.22

0.66

-1.87

0.34

US and

CCMP

01/01/2001 -1.34

0.60

-1.43

0.56

-1.40

0.57

-1.40

0.57

-1.81

0.37

-1.80

0.37

CA and

SPTSX

01/06/1994 -2.89

0.04

-2.57

0.10

-2.43

0.13

-2.12

0.23

-2.46

0.12

-2.00

0.28

MX and

MEXBOL

01/08/2001 -3.42

0.0118

-3.42

0.0118

-3.50

0.0094

-3.56

0.0080

-3.61

0.0068

-3.67

0.0057

BR and

IBOV

01/01/2007 -2.16

0.22

-1.97

0.29

-2.03

0.27

-1.85

0.35

-2.73

0.07

-1.85

0.34

EU and

SXXE

01/01/2002 -1.77

0.39

-1.84

0.35

-1.77

0.39

-1.77

0.39

-1.76

0.39

-2.12

0.23

EU and

SXXP

01/01/2002 -1.85

0.35

-1.92

0.32

-1.79

0.38

-1.88

0.33

-2.10

0.24

-2.08

0.25

EU and

SX5P

01/05/2001 -1.31

0.62

-1.41

0.57

-1.28

0.63

-1.47

0.54

-2.20

0.20

-2.66

0.08

UK and

UKX

01/01/2002 -2.12

0.23

-2.18

0.21

-2.89

0.04

-2.36

0.15

-3.95

0.0020

-2.87

0.05

FR and CAC 01/06/2001 -2.14

0.23

-2.37

0.15

-1.99

0.28

-2.22

0.19

-2.45

0.12

-2.29

0.17

DE and

DAX

01/02/1997 -1.55

0.50

-1.73

0.41

-1.78

0.38

-2.06

0.26

-2.65

0.08

-3.14

0.025

DE and

DAX

01/01/2001 -1.55

0.50

-1.73

0.40

-1.78

0.38

-2.06

0.26

-2.65

0.08

-3.14

0.02

ES and

IBEX

01/04/1993 -2.40

0.14

-2.58

0.09

-1.72

0.41

-1.86

0.34

-2.11

0.23

-2.17

0.21

ES and

IBEX

01/01/2001 -1.53

0.51

-1.62

0.46

-1.72

0.41

-1.71

0.42

-1.97

0.29

-1.86

0.34

24
The first line of each cell is the t-statistics (either from an ADF tests whose lag is selected by optimizing the Schwarz Information

Criterion, with a maximum lag of 25, or a Phillips-Perron test, using the Newest-West Bandwith test). Data used is daily, end-of-the day data

(closing prices).
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IT and

FTSEMIB

01/01/2004 -2.56

0.10

-2.65

0.08

-2.65

0.08

-2.77

0.065

-2.85

0.054

-2.92

0.046

SE and

OMX

01/01/1994 -1.9

0.33

-2.61

0.09

-2.25

0.18

-1.92

0.31

-2.46

0.12

-2.18

0.21

CH and SMI 01/01/2002 -1.48

0.53

-1.78

0.38

-1.74

0.40

-1.77

0.39

-2.55

0.105

-2.51

0.11

JP and NKY 01/02/2000 -2.17

0.21

-2.30

0.17

-2.74

0.06

-2.91

0.04

-5.08

0.00

-3.70

0.005

JP and TPX 01/04/1993 -1.45

0.55

-1.50

0.52

-1.83

0.36

-2.24

0.19

-10.74

0.00

-10.93

0.00

CN and

SHASHR

01/06/2005 -2.31

0.16

-1.85

0.34

-2.21

0.20

-1.84

0.35

-2.18

0.21

-1.81

0.36

AU and

AS51

01/01/2000 -2.98

0.039

-3.14

0.02

-3.37

0.013

-3.19

0.02

-3.92

0.00

-3.39

0.013



Article 3: Optimal CSD reshaping towards T2S1

Non technical summary

TARGET2-Securities (T2S) is a project for creating a single European IT-platform for settling secu-
rities transactions. It will offer the various national Central Securities Depositories (CSDs) harmonised
securities settlement services in central bank money for a single European market. CSDs deciding to
join T2S have to adapt their own IT infrastructure to T2S, that is, to "reshape" towards T2S. This
adaptation towards T2S requires some investments by CSDs. In practice anything between two extreme
cases is possible: in the first extreme scenario, a CSD could apply a "T2S-fees-on-top approach" in which
the CSD simply keeps its existing IT infrastructure and puts T2S on top of it. In this case, the CSD will
have to replicate all the data from T2S to its own legacy system before it can further operate and provide
its services. Such a strategy probably implies no cost savings compared to the status quo and puts the
operational costs of T2S on top. This strategy may, however, limit the immediate CSD adaptation costs
to T2S. In the other extreme scenario, a CSD could apply a "Greenfield approach" in which it sets up a
completely new infrastructure that is entirely shaped to incorporate T2S in the most cost-efficient way.
In this case, this CSD could minimise the part of its own costs that come on top of the fees to be paid for
the use of T2S, but at the same time it would probably face significant upfront investment costs. Hence,
each CSD is faced with an individual strategic decision, and the overall gain in efficiency brought by T2S
to the settlement industry depends on each CSD’s individual decision as to which degree it will reshape.
Since reshaping involves a significant lump sum investment, CSDs could be tempted to delay the

moment when they reshape. Because higher operating costs in the industry justify higher prices and
possibly bigger CSD profit margins, there could be an incentive for CSDs to tacitly collude to avoid
reshaping. Hence, besides the problem of knowing what is a CSD’s individual optimal degree of reshaping
is the problem of studying the possibility (and plausibility) of tacit collusion not to reshape.
This study makes use of a simple analytical model, cast into a dynamic game theoretic setting, to

answer both issues. A closed-form expression for the optimal degree of reshaping is derived from the
model, and simulations are provided as an illustration. These simulations involve ranges of plausible
parameters derived from public data: For example, the cost of settling in T2S is taken from the T2S
price list published by the ECB and the adaptation costs for a large CSD are assumed within the very
broad range of EUR 5 million to EUR 50 million. Clearstream and Euroclear, the two largest European
CSD groups, have announced that they intend to charge their users a maximum of EUR 30 million
and EUR 25 million, respectively, as adaptation costs to T2S. In particular, these simulations allow to
experimentally visualize the sense of variation of the optimal degree of reshaping as a function of the
various parameters of the model, such as the market size, the costs per transaction of a given CSD, the
price elasticities of the demand of settlement services, etc. A simple condition under which tacit collusion
not to reshape is an equilibrium is provided. Interestingly, when this condition fails, and when price
competition is assumed in each price-setting stage of the model, there can be no such tacit collusion.
The stability of the various equilibria is then discussed. Finally, it is shown analytically that two natural
generalisations of the model, i.e. allowing for an arbitrary number of CSDs and introducing a delay in
the observability of the reshaping decision of other CSDs, do not affect the results of this paper.
The focus of the paper is on the optimal decision of CSDs for their reshaping towards T2S. The results

provide interesting insights about an optimal, non-reversible investment decision that can be applied more
broadly in the Industrial Organisation literature.

1This paper has been co-written with Stephan Sauer (stephan.sauer@ecb.europa.eu), and published in the ECB Working
Paper Series no 1549, May 2013, and in the Journal of Financial Market Infrastructures, vol. 2, no. 2, pages 3-51, 2014.
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1 Introduction

1.1 What is T2S?

TARGET2-Securities (T2S) is a project for creating a single European IT-platform for settling securities
transactions. Developed and — as of 2015 — operated by the central banks of the euro area (the Eurosys-
tem), T2S will offer the various national Central Securities Depositories (CSDs) harmonised securities
settlement services in central bank money for a single European market.
The introduction of T2S is a significant change to the European post-trading industry. Today, around

40 CSDs in Europe operate in a domestically-oriented, fragmented and thus largely monopolistic market
structure. An analogy often used with T2S is a railway system in which national monopolists own and
operate the tracks and the trains. In this analogy, both tracks and trains have a number of national
specificities, which makes travelling across borders a costly, lengthy and sometimes risky process because
of the frictions associated in particular with non-harmonised tracks.
Today’s European settlement industry is in many ways similar to such a fragmented railway system.

Already in 2001, a group chaired by Alberto Giovannini published a report that asserted that “ineffi-
ciencies in clearing and settlement represent the most primitive and thus the most important barrier
to integrated financial markets in Europe”(see Giovannini [13]). Differences for example in technical
interfaces, message formats, intraday settlement finality rules, opening days and daily timetables became
known as the 15 Giovannini barriers and they have largely remained in place since 2001.
T2S aims at overcoming these fragmentations in European securities settlement. In the image used

above, it will provide a single set of tracks on which the railway companies may operate their trains. T2S
will thus allow economies of scale, more cost-efficient processes and new business opportunities2 . The
Eurosystem has invited all CSDs in Europe to outsource their settlement services to T2S. By 2012, 22
CSDs have signed a legal agreement (“Framework Agreement”) with the Eurosystem, including almost
all CSDs of the euro area. While CSDs will keep the legal relationship with their customers and can
provide various services to them, the settlement of securities will be technically processed in T2S.

1.2 What is CSD “reshaping” towards T2S?

CSDs need to “reshape” their existing infrastructures to access T2S. This adaptation towards T2S requires
some investments by CSDs. In practice anything between two extreme cases is possible: in the first
extreme scenario, a CSD could apply a “T2S-fees-on-top approach” in which the CSD simply keeps its
existing IT infrastructure and puts T2S on top of it. In this case, the CSD will have to replicate all the
data from T2S to its own legacy system before it can further operate and provide its services. Such a
strategy probably implies no cost savings compared to the status quo and puts the operational costs of
T2S on top. This strategy may, however, limit the immediate CSD adaptation costs to T2S.
In the other extreme scenario, a CSD could apply a “Greenfield approach” in which it sets up a

completely new infrastructure that is entirely shaped to incorporate T2S in the most cost-efficient way.
In this case, this CSD could minimise the part of its own costs that come on top of the fees to be paid
for the use of T2S, but at the same time it would probably face significant upfront investment costs.
Hence, European CSDs face crucial strategic decisions: as the participation in T2S is voluntary, should

CSDs jump with their trains on the new tracks, i.e. should they join T2S? And, for those who decide to
join, to which degree should they adapt — or “reshape” — their current trains, i.e. their own IT platform,
their human resources and even their business model to T2S? In particular, CSDs are faced with the
problem of deciding what is the optimal pricing scheme in the new post-trade environment. For example,
CSDs might be tempted to increase their fees in order to recover their immediate investment costs from
adapting to T2S, thus passing these to their customers.

2The European Central Bank (ECB) provides information about T2S via the website www.t2s.eu. Non-technical gen-
eral information on T2S is available in particular in the T2S brochures (http://www.ecb.europa.eu/paym/t2s/about/
brochures/html/index.en.html) and in some videos in the multimedia room (http://www.ecb.europa.eu/paym/t2s/about/
multimedia/html/index.en.html).
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1.3 Outline of the model and main results

In this article we address these questions using a finite and then infinite dynamic game, where the
decision to reshape incurs immediate fixed costs but future potential benefits, stemming both from cost
reductions and from increased market shares. The focus of the paper is on the optimal decision of CSD
for their reshaping towards T2S. The results provide interesting insights about an optimal, non-reversible
investment decision than can be applied more broadly in the Industrial Organisation literature.
In our first (finite-time) model of Section 2, we give all CSDs the choice to reshape only at the

beginning of the game, and then determine the unique subgame perfect Nash equilibrium of this game.
In particular, we prove that in the absence of capital constraints, CSDs should not increase the price of
their transaction services after reshaping (Proposition 1), and should even decrease them correspondingly
to the costs-reduction obtained from their reshaping. We derive closed-form formulas giving the optimal,
profit-maximizing pricing at each period of the model as well as the degree of optimal reshaping as a
function of the main parameters of the model (Theorem 1), and in particular as a function of the costs per
transactions of each CSD as well as of the different substitution effect among CSD settlement services.
We carry out simulations with different parameters derived from publicly available data. For example,

the cost of settling in T2S is taken from the T2S price list published by the ECB. The costs for fully
reshaping a large CSD towards T2S are assumed within the very broad range of EUR 5 million to EUR
50 million. At the end of 2012, Clearstream and Euroclear announced that they intend to charge their
users a maximum of EUR 30 million and EUR 25 million, respectively, as adaptation costs to T2S (see
Clearstream [4] and Euroclear [10]). Since greater adaptation costs reduce the benefits of reshaping, our
parameters are chosen in a conservative way which is detrimental to reshaping. Also the other parameters
are based on rough approximations from publicly available data, primarily from the two largest European
CSD groups, Clearstream and Euroclear.
In the second model, presented in Section 3.1.2, we modify the rules of the game to allow participating

CSDs to reshape at any time. This induces more strategic behaviour on the part of CSDs, because it
allows them to design reshaping strategies that are dependent on others’ reshaping timing. An important
result is an explicit sufficient condition on costs per transactions and price-elasticities under which tacit
collusion to perpetually delay the reshaping can occur (Theorem 2). That is, we provide a condition
under which there also exists a particular subgame perfect Nash equilibrium in which no existing CSD
reshapes towards T2S and all CSDs just puts T2S on top of its current infrastructure, because each CSD
expects all other CSDs to behave like this. However, this equilibrium seems rather fragile as it likely to
break down as soon as one of the CSDs deviates from it, or as soon as only marginal changes to the basic
model are introduced: possibility of new entrants in the settlement industry, observability of reshaping
behaviour, or enough homogeneity in cost-efficiency and price-elasticities of the main CSDs. Since all of
these effects are likely to be fulfilled in the post-trading market with T2S, it seems unlikely that it will be
the optimal strategy for a CSD not to reshape its current infrastructure to T2S. Moreover, this condition
we prove to be also necessary (Theorem 3). Hence, we also get a condition under which there can be no
collusion to delay the reshaping. The main results are further discussed in Section 3.2.3. They are robust
with respect to a delay in the observability of the reshaping of other CSDs as discussed in Section 4.
We also briefly discuss — since it is not the main focus of the article — how to apply this model

and hence derive the same type of results with respect to the combined decision to join and reshape.
In particular, while we note that tacit collusion for not joining T2S could be one of several possible
equilibria, the publicly stated intentions of some CSDs to join T2S imply that this equilibrium will not
apply in reality. In particular, Theorem 7 gives a sufficient condition for a CSD to join and to completely
reshape no matter what the other CSDs decide.

1.4 Literature review

There has been, until fairly recently, a relative scarcity of research articles on the post-trading industry,
at least when compared to the trading industry or to other well-studied network industries such as
telecommunications. For example, the 2007 survey by post-trading by Milne [21] includes only papers
published after 2001. Milne’s conclusion that more research in this field is needed is as valid as ever, not
least because of a significant amount of regulatory (such as the Dodd-Frank act in the United States or
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the European Market Infrastructure Regulation (EMIR) in the European Union) and technical initiatives
(such as T2S).
On the empirical side, the papers by Cayseele and Wuyts [2], and by Schmiedel, Malkamaki and

Tarkka [24] have received most attention in the literature. They show that the post-trading industry
exhibits significant economies of scale and scope.
On the theoretical side, the relevant literature combines elements of the classic theory of industrial

organization, as described by, for example, Tirole [27] with more distinctive features of the post-trading
industry. It focuses on network effects, two-sided markets and vertical as well as horizontal integration
as key features of post-trading infrastructures.
A description of general network effects in an industrial organization setting is given for example by

Economides [8]. The participation of additional market participants in a settlement system increases
the benefits of participation for other market participants. For example, if market participants can do
business with more counterparties, liquidity increases and as a consequence, capital costs tend to decrease
(see for example [7], chapter 5). An introductory general discussion of these network effects in the setting
of the post-trade industry, with some comparisons with other network industries, can be found in Knieps
[16] and an application of the network effect in settlement in Holthausen and Tapking [14].
Post-trading market infrastructures and CSDs in particular are necessary to bring together issuers

and investors in the primary market and to allow the exchange of securities between investors in the
secondary market. The cost of capital for issuers and the returns of issuers after transaction costs can
create a virtuous circle with the liquidity in the market. Hence, post-trading market infrastructures
exhibit features of two-sided markets where for example pricing decisions should take into account both
sides of the market. For example Kauko [15] is an attempt to capture this feature by designing ad-hoc
models to illustrate this dual aspect specific to the post-trading industry.
The majority of the theoretical literature in this field looks at vertical and horizontal integration

in trading and post-trading. In some national markets such as Germany or Italy, a single “vertical
silo” operates the trading, clearing and settlement infrastructure. Other markets such as France use
separate firms for the different elements of the value chain. Some of the firms active in these markets
have horizontally integrated their activities across different national markets. A prominent example is
Euroclear’s ESES-platform (Euroclear Settlement of Euronext-zone Securities). A key difference to the
standard industrial organisation literature as in [29], for example, is that market infrastructures with
economies of scale and scope and network effects operate at each layer of the value chain (trading,
clearing, settlement). Many financial market participants use each infrastructure directly so that the
standard perspective of upstream and downstream firms producing goods or services for the final user is
not necessarily directly applicable.
Tapking and Yang [26] use a theoretical model for cross-border trading to systematically compare

the welfare of different industry structures for securities trading and settlement. In their model, which
captures competition and transaction cost effects, welfare is the highest for horizontal integration, while
it is higher for vertical integration than for complete separation. Pirrong [22] focuses on the industry
structure in a single market and emphasises transaction cost reductions from vertical integration. He
argues that the transaction cost benefits can be (partly) offset by increasing differences between the
scope economies at the different layers of the value chain. Cherbonnier and Rochet [3] look at a different
possibility of vertical integration, namely between a single CSD as provider of settlement and custody
and banking services3 and one of two competing custodian banks. They build on the model developed
in Holthausen and Tapking[14] to analyse the welfare effects and optimal regulation of such vertical
integration. Cherbonnier and Rochet conclude that the possibility of vertical integration would require
the regulation of access pricing which would introduce other inefficiencies. They suggest that competition
between several CSDs, which is one of the visions of T2S promoted by the Eurosystem, could limit the
need for regulation, but this idea is not included in their formal model.4

By looking at the optimal reshaping decision of CSDs, we add another aspect to the literature on post-

3The scope of services offered by CSDs differs and can include custody and banking services as some CSDs have a
banking licence.

4Koeppl and Monnet [17] and Rochet [23] analyse further interesting theoretical models about vertical integration in the
post-trading industry.
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trading that is closely linked to the industrial organisation literature. In fact, the basic mechanisms of the
model remain fairly general and thus contribute to literature on investments, which has also examined
the trade-off between paying a lump sum today to reduce costs or improve quality tomorrow. There has
also been considerable research in a general setting about investments in productive capacity, as well as
in modelling competing firms’ strategies (with or without investment). For example, Fine and Freund
[11] examine the trade-off faced by firms in investing into a product-specific or a more expensive flexible
production capacity. Nevertheless investment in our setting would be dedicated to reducing the average
cost-per-transaction, not to aim at a more flexible business. Eliashberg and Steinberg [9] examine the
possible strategies of two competing firms with different cost structures. Most of these models were
designed for the manufacturing industry. While capacity constraints and thus optimal capacity planning
is also relevant for the processing of securities settlement transactions, a key element in the previous
literature is the management of the inventory. This does not apply to the production of settlement
services. The reader interested in the specific problems of investment in capacity, in particular in high
IT-industry, can refer to Wu’s survey [31].
One of the closest article to ours in the stream of the literature dealing with investment seems to

be Spence [25]. It tackles the problem of the trade-off of paying a higher lump-sum of investment in
order to reduce costs per unit of production in the subsequent periods of the game. Although Spence’s
article allows for very general forms of profit and demand functions and could in theory be applied to
many investment decision problems, the investment decision in the article is presented as an investment
in research and development, more than in infrastructure. Hence, Spence’s main concerns are tied to the
potential spillover effects of research on the optimal degree of investment by firms as well as the optimal
level of subsidies from the authorities required to maximize aggregate welfare. Another article close to
ours is Valletti and Cambini [28] where investment is designed to improve the quality of the services
provided by a network, rather than to reduce costs as in our article. This investment can also a positive
external effect on the quality of the service offered by other networks. The paper is similar to our article
in two different aspects: first, the higher quality attracts more demand, as in our model lower costs allows
lower equilibrium prices and ultimately attract more demand. Second, the authors demonstrate that high
termination charges, as well as an increased interplay between the quality level of both networks, can lead
to collusion to under-invest. A difference with our collusion theorem is that collusion here stems from the
direct interplay between the two competitors, either through the termination fees they have to pay to each
other’s or through the quality spillover of their investment decision, while our tacit collusion theorem
comes from the links of competitors as providing partially substitutable services of settlement. For a
survey indicating how access prices can be used as an instrument of tacit collusion in a communication
network setting, please refer to Vogelsang [30]. For an review of the price-competition in a dynamic
setting, please refer to Maskin and Tirole [19].
Our paper obviously also contributes to the literature on T2S. The Eurosystem published an economic

feasibility study about T2S in 2007 [5], followed by an economic impact assessment in 2008 [6]. These
studies describe and quantify the cost savings and economic benefits associated with T2S for CSDs, their
users and final investors and issuers. In particular the later study ([6]) was developed in close cooperation
with market participants and the quantitative results are based on data provided by market participants.
There is, however, a significant lack of studies that use analytical models to investigate the competition,

network and welfare effects of T2S more specifically. Cales et al [1] is the only paper to our knowledge
that is concerned explicitly with T2S. It is based on Matutes and Padilla [20], who use the Salop model of
space competition, which is itself a generalization of the Hoteling model used in many articles of the post-
trading literature. An advantage of using the Salop model instead of the more classical Hoteling model
is to allow for competition between three CSDs providing depository and settlement services to banks.
An important assumption is that securities must be deposited in their domestic CSD, whereas banks
(the users of CSDs) can choose the CSD for settlement if the CSD is in T2S. Hence, three alternative
situations for competition in settlement services can be modelled: the so-called "compatibility case",
where all the three CSDs join T2S for settlement, the "incompatibility" case, which corresponds to the
current pre-T2S situation and no CSD joining T2S, and the "partial compatibility" case, where precisely
two CSDs join T2S while the other stays out. The authors capture the benefits of T2S for cross-border /
cross-CSD settlement transactions by a network benefit for banks that increases in the number of CSDs
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joining T2S. This is an important difference to our model in which we focus on cost-reductions for CSDs
that depend on the reshaping of CSDs. They arise from the availability of a single settlement platform
allowing for economies of scale.
Cales et al [1] conclude that competition will lead to price decreases if all CSDs join T2S. If only a

subset of CSDs joins T2S, the effect on CSD prices depends on the relative importance of the competition
and network effects as CSDs in T2S can gain part of the network benefit from banks.5 Importantly, banks’
welfare increases also in this case, as for them the network benefit always dominates the potential price
increase of CSDs. Similar to our paper, Cales et al [1] mention a possible coordination problem for CSDs
joining T2S and the possibility of tacit collusion among CSDs. However, we look at the possibility and
sustainability of tacit collusion in much more detail.

2 A dynamic N-period model for the degree of optimal reshap-
ing

2.1 Motivation

We consider the subset of CSDs having joined T2S and ask the question of the optimal degree of reshaping
that they should target. Indeed, reshaping incurs immediate costs, but long term potential benefits,
hence a balance should be found between a complete reshaping and a pure juxtaposition of the T2S
IT-infrastructure and business model on top of the CSD infrastructure and its own business model, with
no costs reduction, neither technological or in the servicing staff, from the participating CSD. Also, the
settlement industry is a somewhat competitive environment - and even if it were not, it is expected to
become much more competitive with the introduction of T2S. Hence the optimal pricing and reshaping
decisions do not only depend on a given CSD’s own characteristics but on the similar decisions from
others.

2.2 The dynamic game

To try to capture how the degree of optimal reshaping - interpreted in a rational setting as the degree
of reshaping in a Nash equilibrium of the game - depends on these various parameters and participants’
action, we define the following dynamic game:

1) At the beginning of the game all CSDs having joined T2S simultaneously decide to which extent
they will reshape6 . This is modelled by the choice, for each CSD , of a pair ( ) of real numbers
between 0 and 1, each pair being associated with a given adaptation cost ( ). The choice
of a greater reshaping to reduce fixed costs is modelled by a higher , while the choice of a greater
reshaping to reduce transaction costs is modelled by a greater . The adaptation costs function 

is thus logically increasing in both its parameters, and the maximum possible reshaping corresponds
to ( ) = (1 1). Such a reshaping is not necessarily optimal, since although it would produce the

5The reason is that in Cales et al [1] demand is perfectly inelastic, the greater utility of being a client of compatible
CSDs allows them, in some case, to price their services higher than in the incompatibility case. This result should be taken
with care: first, it relies on perfect inelasticity of demand: the banks are not given the opportunity to trade and settle less
often in front of higher prices in the model: they have to be some CSD clients no matter the overall prices. Second, Cales
et al distinguish in total four ranges of parameters, each with its own implications in terms of profitability. In particular,
when the added utility of the network effect (and which relies exclusively on the inter-substitutability of CSDs having
joined T2S in terms of their settlement services) is high enough compared to transportation costs (which represents product
differentiation and banks ’preferences for their closest CSD), Cales et al find that the CSDs which had opted out would be
better off inside T2S. This suggests CSDs which settle products that have very close substitutes in the other CSDs’ market
would make a very poor bet by staying out of T2S to preserve their natural monopoly on the settlement services (service
"bundled" with depository services), in particular in a context of globalization and harmonisation in Europe where many
issuers could easily issue in other European countries and thus completely avoid a CSD outside of T2S.

6The legal contract governing the relationship between CSDs and the Eurosystem as the provider of T2S services, the
Framework Agreement, requires that "The Contracting CSD shall use reasonable efforts to adapt its operational, internal
guidelines as well as its processes and related technical systems in order to foster the development of the European post-
trading infrastructure, make efficient use of the T2S Services and maintain the Multilateral Character of T2S" (Article 4,
Chapter 2). This formulation leaves a very large degree of freedom to CSDs concerning their reshaping.
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maximum cost-reduction in the future, it entails a the highest cost at the beginning. We assume CSDs
can finance their adaptation costs at the cost of capital .

2) Each CSD observes the reshaping decision of others, then play repeatedly, for a certain number

 ≥ 2 of times, the price-setting game ( e e) described in the section below, which consists in a
simultaneous choice by each CSD  of the price  it sets for its settlement service, given the associated
costs ( e e) assumed in the following table:

period fixed costs e of CSD  cost per transaction e of CSD 
1 (1− ) + ( ) (1− ) + 2
2 (1− ) (1− ) + 2
 ... ...
 (1− ) (1− ) + 2

Hence these costs depend on each CSD reshaping decision at the first stage of the game: if CSD 
has chosen a ( )-reshaping at the beginning of the game, then it pays immediately ( ), the
corresponding adaptation costs, which is assumed increasing in both its variable  and its variable .
The cost per transaction e consists of the individual CSD’s cost  after reshaping and a constant fee per
transaction 2 for the use of T2S.

2.3 The price-setting game (e)
The model chosen for capturing inter-CSD competition and substitution effect among the settlement
services provided by CSDs is the following: at each period of the game the demand for settlement
transactions  in CSD  is given by

 =  −  + 

where  is the average price charged by CSD  for its settlement services, and  and  are
nonnegative constants. Note that  is the elasticity of the volume of transaction  to the price per
settlement transaction , and  is its elasticity to the price per settlement transaction set by CSD ;
hence greater competition and substitution effect translates into a greater  .

Remark 1: The demand equation could be normalised in , but keeping the parameter  makes
interpretations of the simulation part easier to understand.

Remark 2: We consider in this Remark the many possibilities presented by this very simple stage
game model. First, for two CSDs  and  the model consists in assuming:

½
 =  −  + 
 =  −  + 

Hence total demand for settlement services is

 =  +  =  +  + ( − ) + ( − )

The assumption  ≤  as well as  ≤  ensures that there is no possible way to increase the price
level ( ) that would result in a higher aggregate demand (because we assume  and  nonnegative
the local demand will necessarily be lower). We will thus work under this assumption. Nevertheless, our
formal derivations only require the weaker assumptions  ≤ 

√
2 and  ≤ 

√
2.

In terms of competition through price-setting, the model can be interpreted as follows. Consider, for
example, a price increase of one unit for the settlement services provided by CSD , while the price set
by the other CSD stays constant. It translates into a loss of demand of  for settlement services offered
by CSD , of which  is re-captured by CSD : market participants which could do so have reacted by
switching to the settlement services provided by , still the higher prices result in a decrease of  − 
of aggregate settlement demand.
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Demand is indeed responsive to price; a lower local price translate in higher settlement demand since
transactions that were not profitable before now become profitable; still, we can ensure (if we ever want
to) an inelastic aggregate demand by assuming the extreme case where  =  and  =  . Then
 = + is constant, whatever the price level, while demand for settlement in a given CSD still responds
negatively to prices set by this CSD. The case where settlement services are completely non-substitutable
— and where, as a consequence, there can be no competition between CSD  and CSD  — is obtained by
setting  =  = 0.
In order not to mix the incentives for the investment / reshaping decision given price competition with

the effects of increases in price competition, the main part of the paper does not consider changes in price
competition over time. However, Annex 7.8 shows that the set of parameters for which tacit collusion
is sustainable in a high competition / substitution environment is larger than in a low competition /
substitution environment.
Interpreting CSD  as consisting of all other agents providing settlement services except CSD ,

instead of a particular given CSD, is a convenient simplification to generalizing the model to  CSDs
and multiplying the number of parameters given the complexity of analytical solutions. The focus is then
set on CSD , while the parameters defining CSD  reflect an average of the parameters for the rest
of the settlement industry.7 In particular, new entrants in the industry will modify the value of these
parameters, for example entrance of new low-cost CSDs will certainly affect  negatively, since they
decrease the aggregate costs in the settlement industry. The price  would, following the same idea, be
the average price for settlement services in the market, excluding the price set by CSD .

2.4 Analytical Resolution

For dynamic games, the concept of subgame-perfect Nash equilibrium is particularly relevant, because
contrary to the simple Nash Equilibrium (Nash equilibrium) concept, it does not include strategies in-
volving threats that are not credible. This is the reason why it is widely used in economics today and
will be used extensively in this article. Note that although it is common to distinguish between strict
and weak Nash equilibria, we will often not do so as the limiting conditions that translate into a weak
Nash equilibrium are most of the time of very little interest. In fact, we will always talk of Nash equi-
librium (resp. subgame perfect Nash equilibrium) when we actually mean strict Nash equilibrium (resp.
subgame perfect Nash equilibrium). Solving the game by backward induction as we proceed to do allows
to find all subgame perfect Nash equilibria. We will see that, because each stage game has only one Nash
equilibrium, there exists in fact only one subgame perfect Nash equilibrium: the one where the Nash
equilibrium of each subgame is played repeatedly. Only the main results are reported here: the detailed
computations are provided in Annex 7.1.

2.4.1 A Cost Structure Assumption ()

We will assume for all our derivations that the costs of settlements are always smaller than the price set
by the CSD for the settlement services. This allows to get rid of unwanted corner solutions, where a given
CSD would in practice stop all settlement activities (which amount to withdrawing from the market),
because its optimal price, that is, the price at which maximizes its profits, still does not yield positive
profits. Formally, the  states that for any costs (e e) involved in the model, we have ∗ − e ≥ 0
and ∗ − e ≥ 0, so that no CSD makes a loss by settling an additional transaction. As we will see, at
equilibrium of the price-setting stage we have ∗ − e = 1


∗ , hence the  also translates into stating

that the quantities produced at equilibrium are positive, i.e. ∗ ≥ 0 and ∗ ≥ 0. Note the assumption of
 has to be checked whenever simulations using the equilibrium formulas provided here are performed.

7Of course, such simplification does not allow to analyse all potential strategic aspects for such an additional CSD.
However, the focus below (see Section 3.2.3) is on the impact of an additional CSD on CSD  by lowering  and  . Annex
7.5 includes a more formal generalisation of the model to  CSDs under the simplifying assumption of symmetry between
the CSDs.

93



2.4.2 Nash equilibrium of the price-setting game (e)
Profits for a given CSD  in a period where the costs per transaction are e are:

 = ( − e)

The best-response ∗ () of CSD  to a price  from CSD  is thus

∗ () =
1

2
( + e + )

and similarly

∗ () =
1

2
( +  e + )

Corresponding profits are

(
∗
 () ) =

1



µ
1

2
( − e + )

¶2

and an analogous formula holds for the maximum profits derived by CSD  for any choice of price  by
CSD .
At equilibrium of the stage-game , the level of prices ( ) satisfies:

½
 = ∗ ()
 = ∗ ()

Let us denote by ∗ the price set by CSD  in the equilibrium of the stage-game. Then we get, by solving
the above system: ½

∗ =
1

4− (2 + 2 e +  +  e)
∗ =

1
4−

(2 + 2 e +  + e)

Note in passing that the fixed costs do not influence the equilibrium prices of the price-setting game. That
is, the model predicts that CSDs should not try to recover the adaptation costs by increasing their price
per transaction compared to the situation with no adaptation costs. CSDs will recover their adaptation
costs over time from cost reductions and increased demand for settlement services. Indeed, if CSD 
deviates from the Nash equilibrium prices by trying to set  higher to compensate for its adaptation
costs, then, assuming CSD  does maximize its profits and play ∗ (), CSD  does not maximize its
profits (This is because it is not playing its best response  = ∗ () - if it was, then since CSD  plays
 = ∗ () they would indeed both be playing the Nash equilibrium (∗  

∗
 ), a contradiction with CSD

 deviating from it).
By applying backward induction to the whole repeated game, we see that this stage-result holds for the

whole repeated game, that is, the optimal pricing should not take into account the adaptation costs (see
the remark at the end of section 2.4.3). In other words, CSDs which try to pass on their own adaptation
costs to their clients will be penalized by earning less than if they had just set the equilibrium price they
would have set in the absence of adaptation costs8 :

8 It is interesting to note that Clearstream and Euroclear, the two largest European CSD groups, published documents
in December 2012 (see Clearstream [4] and Euroclear [10]) that informs the clients their respective clients of an additional
charge of EUR 0.094 and EUR 0.10, respectively, per instruction to finance the adaptation costs to T2S before their
respective migration to T2S. (For the Euroclear Group, this charge applies so far only to the ESES platform, covering the
Belgian, Dutch and French markets.) Clearstream furthermore announced that they would not add any margin on top of
the direct T2S fee (2 below). These decisions appear to confirm the prediction of the model that CSDs will not be able
to recover adaptation costs by increasing fees after adaptation to the T2S environment. The model does not capture the
possibility to raise fees in today’s largely monopolistic market structures before the introduction of T2S.
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Proposition 1 In the finite model, no CSD should increase its prices in an attempt to cover its adap-
tation costs, whatever they are. If some CSD  deviates in at least one period of the repeated game from
the price ∗ it would have chosen in the absence of adaptation costs, it will make strictly less profits
than by playing ∗ . ∗ is only a function of the costs (e e) of all the CSDs at this period, the different
price-elasticities (    ) and the sizes ( ) of the demand for each settlement service.

Our price-setting model has thus clear-cut behavioural consequences concerning the pricing of the
settlement services in the periods subsequent to the adaptation period, suggesting that in a competitive
setting CSDs will not increase the price of their settlement services if they try to maximize their profits.
In particular, it asserts that if players are rational and profit-seeking, then the costs reduction (that is,
a decrease in e and e) will be correctly reflected in lower prices (since  is a decreasing function of e
and e), and not kept at the pre-reshaping level in an attempt to cover the previous adaptation costs,
least of all increased.

Definition 1 We say that CSDs engage in price competition, or that there is price competition, if they
always play the Nash equilibrium (∗  

∗
 ) at each price-setting game, given the current costs.

Hence, price competition rules out tacit collusion to leave prices higher than the unique competitive
equilibrium of the stage-game.

2.4.3 Optimal degree of reshaping chosen in the first period of the game

The optimal degree of reshaping in the first period of the game depends on the trade-off between the
total profits a CSD can make after reshaping and the adaptation cost for the reshaping.

Total profits: Using the formula expressing  = (
∗
 () ) from the above section and replacing 

by the equilibrium price ∗ chosen by CSD , we find that the profits derived by CSD  in a price-setting
stage game where the equilibrium prices are (∗  

∗
 ) are selected is:

∗ = ( + e −f)2

where

 =
1

2
√


( +


4 − 
(2 + ))

 =

√


4 − 

 =
√
(

2 − 
4 − 

)

A similar expression holds for ∗ . Note that our assumption that  ≥  and  ≥  (Section
2.3) ensures that  ≥ 0.

Remark: Note in passing that the quantity  +  e − e, in the above expression for ∗ , is
positive for any costs (e e) involved, because by the above  + e −e = ∗ − e = 1


∗ and that

our assumption on costs, that is, the , precisely state that ∗ − e ≥ 0 and ∗ − e ≥ 0 for all "costs
involved" (see Section 2.4.1).

The total profits are defined as the profits for the whole game, that is, the discounted sum, by an
appropriate discount-factor , of the profits obtained at each stage game. For example, total profits for
CSD  are


 =

X

=1

−1
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provided that  are the profits realised by CSD  on the -th stage game. Note that, as usual,  = 1
1+ ,

if  is the cost of capital mentioned earlier. Now the total profit 
 derived by playing the Nash-

equilibrium at each stage game is obtained by replacing in the sum each  by the appropriate values
of ∗ (note that 

∗
 depends on the fixed and variable costs involved at each period, and that these costs

are the same for each period  ≥ 2):


 = e( + ((1− ) + 2) − ((1− ) + 2)))

2 − ()

with

e =
½

 if  = 1
1−
1− if 0 ≤   1

Adaptation costs: In the adaptation cost function ( ), the parameter  captures the
reshaping impact on the CSD’s fixed cost; the parameter  captures the reshaping impact on the CSD’s
variable cost per transaction (see Table in Section 2.2).
Assume ( ) = 

2
 for simplicity and to focus on the tradeoff, in a competitive environ-

ment, between paying the lump sum today and benefiting from potential costs-per-transaction reductions
tomorrow, and investing very little today while putting the T2S fees 2 on top of one’s cost . Note
this yields an increasing, convex cost-function, as is probably the case in real life for the adaptation costs
facing a CSD with the costs for reshaping the CSD’s fixed cost part normalised to 0.9

Lemma and theorem for optimal degree of reshaping: If   e22
 , then the best-response

function of CSD  at the first period of the game is

∗ () = min(1max(0 ( + ((1− ) + 2) − ( + 2)))) ()

with

 =
e

 − e22


But what if  
e22

 ? The following Lemma presents the answer:

Lemma 1 Assume   e22
 . Then if CSDs engage in price competition, the best-response function

∗ () is the constant function ∗ () = 1, which represents a complete reshaping decision from CSD 
whatever the degree  CSD  choose to reshape.

The proof of Lemma 1 is contained in Annex 7.1.3.

Remark: Note   e22
 indicates low adaptation costs compared to the square of the CSD

transaction costs times a specified function of cross-elasticities  = (    ). Lemma 1 shows
these low costs result in a complete reshaping ( = 1) being always more appropriate, regardless of the
other CSD’s decision concerning its own degree of reshaping  .

Together with the best-response expression in case   e22
 given by (), this allows to prove

the following theorem:

9Of course, it would be possible to solve the model with other, more general forms for the adaptation-cost function,
in particular, choosing costs functions that also depend on  or on the size of the price-independent demand . For our
adaptation cost function ( ) = 

2

 , since there is no dependency on  then trivially at equilibrium  = 1.
Indeed, since decreasing fixed costs do not affect the pricing, as previously noted in Proposition 1, profits are maximized
when the fixed costs are minimized, which only occurs in  = 1.
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Theorem 1 If all CSDs are playing the Nash equilibrium of each following stage-game of the repeated
game, then the optimal degrees (∗  

∗
 ) of reshaping are given by the following formulas:

(i) If  
e22

 and   e22
 , and assuming the quantities (

∗∗
  ∗∗ ) defined by

∗∗ =
( + ( + 2) − ( + 2))−( + ( + 2) − ( + 2))

1−

∗∗ =
( + ( + 2) − ( + 2))−( + ( + 2) − ( + 2))

1−

belong to [0 1], then (∗  
∗
 ) = (

∗∗
  ∗∗ ).

(ii) If  
e22

 and   e22
 ) then  =  = 1.

(iii) If   e22
 and   e22

 then  = ∗ (1) = max(0min(( + 2 − ( + 2)))))
and  = 1.

(iv) If   e22
 and   e22

 then  = 1 and  = ∗ (1) = max(0min(( + 2 − ( +
2))))).

Proof: The proof consists solely of solving the system:

½
 = ∗ ()
 = ∗ ()

in the four different cases, of which depends the form of the best-response function, as mentioned above.
Detailed computations are provided in Annex 7.1.3.¤

Now playing the Nash equilibrium of each stage game, that is, engaging in price competition, certainly
yields a subgame-perfect Nash-equilibrium for our finite horizon game. Moreover, since the price-setting
games  only have one Nash-equilibrium, and since this is also the case of the reshaping part of the game
(step 1), backward-induction shows that this subgame-perfect Nash equilibrium is de facto the only one
(see the Remark below for a more formal proof). Hence the optimal degree of reshaping in our finite
game setting happen to be those given by Theorem 1. This concludes the analytical resolution of the
finite game model.

Remark 1: The unique subgame-perfect Nash equilibrium can be derived more formally by following
the generalised backward induction procedure described and proven in Mas-Colell et al. [18], p. 277:
Let Γ denote the extensive form of the game which consists of the reshaping decision in the first period
 = 1 of the game and subsequent price-setting games  in periods  = 1  . All variables are also
indexed with , so that the unique Nash equilibrium in the final subgame is (∗  ∗ ). As a consequence,
(∗−1 

∗
−1) is also the equilibrium in the reduced game of the preceding period  − 1. Continuing

this procedure until the first period  = 1 gives (∗1 
∗
1) as the equilibrium. Finally, applying Theorem

1 yields the optimal degrees of reshaping (∗  
∗
 ) in  = 1. The uniqueness of the Nash equilibrium at

each step implies the uniqueness of the subgame-perfect Nash equilibrium of Γ derived by backward
induction.
Remark 2: The case where  

e22
 and   e22

 includes potential “corner solutions” which
are not covered by the statement of the theorem for simplicity. The complete derivation of all NE,
including the so-called "corner-solutions", can be found in the proof of the theorem, in Appendix 7.1.3.
Of course, it is these complete results established by distinguishing twelve different cases that should be
used for any simulations. Still, the non-corner solution (∗∗  ∗∗ ) quoted by the theorem appears in five
out of twelve of these cases.
Remark 3: Notice that, as is often the case in a finite-horizon setting, the model as such does

not allow for tacit collusion. Because all the subsequent stage-games which are price-setting games
have only one Nash equilibrium and hence only one possible Nash equilibrium payoff vector, backward-
induction predicts that repeating the Nash equilibrium of each stage-game is the only subgame perfect
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Nash equilibrium of the whole game. Hence the  -period game does not add a lot of insights over the
one-period game, that is, the game obtained by setting  = 1, except for quantifying the variation of
the degree of reshaping to the time-horizon  of the CSDs. We will enlarge the spectrum of the possible
strategies by moving to an infinite setting in Section 3, while re-using most of the results proved above.

2.4.4 Simulation results

The model developed previously can be used to produce numerical outputs. With sufficient data con-
cerning prices, costs and settlement volumes, a precise number for the optimal degree of reshaping could
be obtained. Because of the insufficient number of data points in our possession, we are not in a posi-
tion to estimate the building blocks of the model in a methodologically correct way. Hence, the results
of this section should better be understood as obtained by assuming a numerical range for the various
parameters for a large CSD, rather than by estimating such ranges from reliable data.

Selection of parameter ranges: Estimations with very limited data on the annual settlement volumes
and average prices per transaction of Clearstream and Euroclear10 were used as a very rough indication to
select a plausible order of magnitude for the - and -parameters of the demand functions. Furthermore,
we assume for the baseline model of the simulations that the corresponding fixed parameter values are
identical for both markets, that is, that 11 = 22, 12 = 21, 1 = 2 and 1 = 2. The fixed value
given to 11 22 12 21 1 and 2 as well as the minimum and maximum values reported in the Table
below are thus not directly linked to our data estimations.
For the whole the simulation part we choose to work with the costs and prices per settlement instruc-

tion, in line with the pricing conventions of most CSDs. A settlement transaction generally consists of
two separate settlement instructions, so that we could have as well chosen to work with the costs and
prices per settlement transaction, appropriately adjusting the parameters.
Data on current CSD costs for settlement and on their adaptations costs to T2S are difficult to

obtain, too. For the current cost per instruction, i.e. the cost parameters 1 and 2, we assume the range
between EUR 0.2 and EUR 0.6 as a rough approximation. These figures are based on observed prices for
domestic settlement instructions and assume (significant) profit margins, so that the actual average cost
of domestic and cross-border instructions is likely to be greater.
In T2S, a settlement instruction will cost EUR 0.15 plus fees for information services which depend

on their use, which in turn will depend on the degree and way of a CSDs’ adaptation towards T2S. The
minimum usage of information services leads to an add-on of EUR 0.012 per instruction, whereas the
currently expected average add-on will be EUR 0.04211 . For the purpose of the simulation, 2 = 0192
is used.
CSDs’ adaptation costs will in reality be highly influenced by their size and their current IT architec-

ture. The more modular their current architecture, the cheaper the adaptation to T2S. This is because
T2S can more easily substitute the CSD’s current settlement engine with only limited impact on the IT
for other services. The more embedded the settlement engine in a CSD’s overall architecture, the more
costly reshaping becomes. These costs grow with the number of other services that a CSD provides.
While these aspects are not directly captured by the model, they justify a very broad range for the
adaptation costs 1 = 2 of a large CSD, which are assumed between EUR 5 million and EUR 50 million.
This range may be set too high even for the largest European CSDs and covers costs for the adaptation
of non-settlement related activities. Hence, in the absence of precise data concerning CSDs’ costs, the
parameters are chosen in a conservative way which reflects a significant variance12 and is detrimental to
reshaping.13

10The data are taken from the annual reports of Clearstream and Euroclear.
11These estimates are based on the report of a T2S pricing workshop with market participants in February 2011, see

http://www.ecb.europa.eu/paym/t2s/progress/pdf/ag/mtg13/item-4-3-2011-02-23-report-of-the-pricing-workshop.pdf.
12The coefficient of variation, a normalised measure of variability, is greatest for the cost parameter .
13 In December 2012, Clearstream and Euroclear, the two largest European CSD groups, released publicly (see Clearstream

[4] and Euroclear [10]) that they will charge a) EUR 25 million as a maximum to their users for the adaptation costs of
Euroclear’s ESES platform which covers the Belgian, Dutch and French markets and b) EUR 30 million as maximum
”external portion” of Clearstream’s T2S investment cost. Their respective total adaptation costs may be somewhat greater.
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Thus the main purpose of this section is not to provide a clear-cut answer about the degree of optimal
reshaping, but to:

� illustrate how simulations could be used to answer numerically the problem of optimal reshaping,
if more data were to become available;

� (partially) solve the problem of the variation of the optimal degree of reshaping  with respect
to its different arguments. Indeed, it is more illustrative to draw these graphs for some assumed
parameter distributions than to try to solve analytically by computing derivatives whose signs are
very difficult to determine given the many parameters involved. In particular, the adaptation costs
were purposely chosen very high in order to get informative graphs. For example cutting down
these high adaptation costs by a factor of 2 would result in a complete reshaping being optimal for
almost all other ranges of parameters. This results in graphs being straight lines of equation 1 = 1,
a not-so-interesting graph to comment, although it has the strong policy implication of a complete
reshaping being the best option.

Below is the Table which summarizes the parameters and parameter ranges assumed for all the
simulations in this section.

min value max value fixed value coefficient of variation
11 22 150× 106 230× 106 190× 106 012
12 21 90× 106 150× 106 120× 106 014
1 2 100× 106 180× 106 140× 106 016
1 2 02 06 04 0.29
2 0192 0
 1 0

1 = 2
14 5× 106 50× 106 275× 106 047

Overview of figures: Each of the two-dimensional graph of Figure 115 was obtained by selecting a
given parameter, displayed on the horizontal axis, and making it vary within the realistic range delimitated
by the "min value" and the "max value" indicated in the above Table, while keeping all other parameters
constant at the level indicated by the column "fixed values" of the same table. The vertical axis depicts
the degree of optimal reshaping, ∗1. Notably, the magnitude of the impact of each parameter has to be
seen in conjunction with its assumed range of variability as evident from the coefficients of variation in
the Table above.
Similarly, the three-dimensional graphs of Figure 2 were obtained by selecting two parameters to

vary within their range while fixing the others. To interpret these graphs one has to keep in mind they
represent the optimal degree of reshaping ∗1 of CSD 1, assuming the other CSD, CSD 2, also acts in an
optimal way. Should the other CSD not follow a profit-maximizing rule, the optimal degree of reshaping
of CSD 1 would be different, and would need to be computed using the best-response function ∗1(2)
given in () with 2 as an input.
The histogram of Figure 3 shows the distribution of the optimal degree of reshaping ∗1 of CSD 1

assuming each parameter is chosen randomly and independently in the range described by the Table,
for 100000 simulations, the uniform distribution being used. We see that, at least for those parameter
distributions, complete reshaping is often optimal. A word of caution is warranted there: drawing
randomly parameters from their assumed range can certainly give parameter constellations that make no
sense. In particular, it could happen that the  does not hold. Hence in the histogram of Figure 3 we
discarded those parameter constellations for which the  does not hold, which amounted to discarding
roughly 9% of the total number of parameter constellations drawn.

14The same adaptation costs were assumed for the two CSDs at any point in the simulation, which implies that when 1
increases then 2 increases by the same amount.
15See Annex 7.9 for all figures based on the simulations.

99



Finally, the graphs of Figure 4 and 5 depict the results of Monte-Carlo simulations concerning the
expected value of the optimal degree of reshaping, subject to knowing each of its parameter in turn. More
precisely, for each point to be drawn, about 10 000 of randomly chosen constellations of parameters were
chosen, and the average alone was represented. The ranges are still the same as indicated in the Table,
and uniform distributions are assumed. The lowest curve of each graph indicates the variance of the
simulations carried out to obtain the corresponding expected value of optimal reshaping on the higher
curve. Because the shape of the graphs obtained are very similar to those of Figure 1, they provide a
positive robustness-check for the sense of variation of the optimal degree of reshaping.

Results of the simulation exercise: We will comment the graphs of Figure 1 by moving from left
to right and top to bottom.

The first and second graphs only underline that the greater the domestic market (1) or the foreign
market (2), the higher the optimal degree of reshaping (for a fixed amount of adaptation costs). This
is because higher volume of instructions in the market make it easier for a given CSD to recover from
its adaptation costs, by benefiting of lower costs per instructions applied to larger volumes. Hence larger
markets have higher degree of optimal reshaping than smaller markets, holding other parameters constant.
Also, the size of the foreign market is much less an incentive to reshape than the size of the domestic
market, as can be seen from the scale of the vertical axis of these graphs.

The third graph indicates that the higher the costs of settlement for CSD 1, 1, the more incentives it
has to reshape, and that there seems to be a linear relation between these two quantities. This confirms
intuition, as reshaping cuts part of these costs per settlement instruction.

The fourth graph shows the optimal degree of reshaping 1 of CSD 1 as a function of the costs per
instruction 2 of its competitor. We see that 1 is first a (slightly) increasing function of the costs 2,
probably because reshaping allows CSD 1 to put lower prices and draw part of the demand for settlement
services originally directed towards CSD 2 to its own market. This positive relation holds up to a certain
threshold, with decreasing marginal increases of 1 as 2 increase. These decreasing marginal increases are
probably due to the strategic decision of CSD 2 itself. Indeed, as we have seen, higher costs per instruction
will prompt CSD 2 to reshape to decrease those costs. Past the threshold this effect dominates and the
optimal degree of reshaping decreases with higher competitor costs. The optimal degree of reshaping for
CSD 1 then becomes flat, corresponding to the situation where CSD 2 has completely reshaped anyway
so cannot decrease any further its costs. Hence, when the cost of CSD 2 continues to increase, this has
no impact anymore on CSD 1 decision to reshape. Nevertheless, note that all these variations, although
interesting to comment analytically, are negligible (vertical scale).

The fifth graph shows that the higher the adaptation cost of a complete reshaping , the less useful
it is to reshape; this is obvious since the adaptation cost is the price to pay to reshape, which counter-
balances future benefits. Hence the higher these costs, the less interesting it is to reshape, holding all
other parameters constant. The interesting point is the particular form of this function, which decreases
quickly first and then very slowly. This particular shape is probably linked to the convex form assumed
for the adaptation cost function. Also noteworthy is the existence of the threshold under which complete
reshaping is the optimal solution.

The last four graphs give an idea of the variation of the optimal degree of reshaping with respect to
different market elasticities, and hence different equilibrium prices before reshaping.

For example, the sixth graph shows that the optimal degree of reshaping 1 happens to be a decreasing
function of 11: The effect from cost-saving on each instruction can compensate the relative fewer gains
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of market share due to lower prices, making reshaping more attractive for lower price sensitivity.16 Notice
that if we were to increase the overall price sensitivity of demand in market 1 by increasing both the
parameter 11 and the parameter 12, the optimal degree of reshaping would increase, as can be seen in
the third three-dimensional graph of Figure 2.

The seventh graph indicates that the more CSD 1 is able to capture demand from the market of
CSD 2, that is, the more it provides substitutable services, the higher the degree of optimal reshaping
of CSD 1. More potential business seems always a good incentive to reshape, as low prices is the main
determinant of demand in the building block of our model.

The eighth graph indicates that variations of 21, which is a parameter characterizing the demand
for settlement services of CSD 2, and not of CSD 1, has nevertheless an impact on the optimal degree of
reshaping of CSD 1. 17

The last graph could be explained using the same argument of indirect effects stemming from the
reshaping decision of another CSD. Indeed, higher 22 implies less reshaping from CSD 2, as for the case
of CSD 1 with 11 explained in the sixth graph, which per se would suggests a higher incentive to reshape
for CSD 1. However this effect is dominated by the fact that the price set by CSD 2, even in the absence
of reshaping, would be much lower, which, if all other parameters are held constant, translates into less
demand for CSD 1 settlement services, and hence less incentive to reshape for CSD 1.

Two other graphs could be drawn: choosing   1, one could draw the optimal degree of reshaping 1
as a function of the discount factor  applied to its future cash flows, and as a function of the time horizon
 . These graphs show that the preference of the CSDs for the present has a meaningful impact on the
optimal degree of reshaping. Hence, the more patient a given CSD, the more reshaping it will undertake
today to derive benefits from it tomorrow, all other things being equal. An interesting point to notice is
that making  very large does not necessarily make a complete reshaping the optimal solution: for some
parameters values the optimal degree of reshaping converges instead towards a given value inferior to 1.

3 Extending the game to infinity

Although the finite game-theoretic setting described in the previous section is useful in simulations (to
add the parameter  or time-horizon of the involved CSDs), and for understanding the model more
easily, it is not very rich in terms of subgame perfect Nash equilibrium: as noted earlier, because the
game is finite and that each stage game yields only one Nash equilibrium, solving by backward induction
to find the subgame-perfect Nash equilibrium yields a single strategy, that is, the one where the unique
Nash equilibrium of each stage game is played repeatedly, independently of the past. Hence the myopic
profit-maximization strategy, where CSDs set the prices yielding the higher payoffs at each period of the
game, is the only subgame-perfect Nash equilibrium.
To allow for other, intertemporal strategies, we need to translate the game to an infinite setting, which

basically just means choosing to repeat it indefinitely while assuming   1 to ensure finite payoffs. Of
course, playing at each step the Nash equilibrium of the stage game still yields a subgame-perfect Nash

16The expectation could be that higher price-sensitivity to its own price would make the price-reduction allowed by
cost-reduction through reshaping even more attractive. Nevertheless, this neglects that prices at equilibrium (and thus the
volumes at equilibrium) would, in a market with a higher 11, already be lower than in a market with low 11. This can be
checked analytically by computing the first derivative of ∗ with respect to 11, which is negative. Of course, cost-reduction
also applies, and reshaping will drop costs, and thus enable lower prices, in the same way as in a low 11 scenario. The
graph hence pin point that the positive effect of lowering prices, and hence of reshaping, is less strong in the high 

11

scenario than in the low 11 scenario.
17Since 1 is unaffected by 21by definition, this impact can only be indirect, due to the strategic decision of CSD 2 to

reshape. Indeed, by symmetry, we know from the graph of 1 as a function of 12 that, when faced with a higher 21, CSD
2 will reshape more. Hence compared to the low 21 case prices of CSD 2 will be lower and CSD 1, faced with a lower
demand for settlement services than in the low 

21
case, but still with the same adaptation cost, will find it less profitable

to reshape. Hence its lower degree of optimal reshaping. Also interesting is that this effect disappears below a certain
threshold (not shown in this graph).
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equilibrium, since any player unilaterally deviating from such strategy will be worse off, but there may
now be other subgame-perfect Nash equilibrium. Nevertheless, most of other results, such as the formula
for the degree of optimal reshaping assuming all CSDs play the Nash equilibrium of each subsequent
stage game, still hold for the infinite case. In particular, Lemma 1 as well as Theorem 1 hold as such in
the new infinite setting, by taking e = 1(1 − ), that is, the limit of the previous e when  tends to
infinity. Note the assumption included in Lemma 1 and in Theorem 1 that it gives the optimal reshaping
assuming all players play the Nash equilibrium of each price-setting game afterwards.

3.1 Delaying or prompting the Reshaping: tacit collusion in the model

3.1.1 Motivation for a new game

In the previous model, CSDs are only allowed to reshape at a single point in time, whereas reshaping
is a private decision that is part of the overall business strategy of the CSDs, and thus may be taken
at different point in time for each of the CSDs. Importantly, because T2S opens up the domestically-
oriented, fragmented and thus largely monopolistic European settlement markets, the decision when to
reshape of a given CSD may be dependent on other CSDs’ choices. Hence, to further study the possibility
of reshaping, we should allow CSDs to reshape at any period of the model. To reach this aim we modify
slightly the previous rules of the game as follows:

3.1.2 The new game

Consider the stage game  made up of the three following consecutive steps:

1) CSDs that have not reshaped so far (simultaneously) choose either to reshape now by some degree
  0 or not to reshape yet ( = 0).

2) All CSDs observe the reshaping decisions of others and (simultaneously) set the price of the set-
tlement service they provide.

3) They earn the associated payoffs as implied by the price-setting stage game described in Section
2.3.

The game  is repeated an infinite number of times. The payoff of the whole game is just the
discounted payoffs of each stage game, with a discount factor  (strictly) inferior to 1. Note that the
stage-game  is not exactly independent of the past since CSDs which chose to reshape in the
past cannot choose to reshape to a different degree in the future. That is, each CSD can only reshape
once and the reshaping cannot then be changed in subsequent periods of the game. This impediment is
of course unrealistic for a CSD which would like to increase its reshaping but much more close to reality
for a CSD who would like to decrease its degree of reshaping and recover part of the adaptation costs
it had paid in some previous period: this would, as in real-life, not be feasible in our model. Indeed,
adaptation costs are costs paid in a lump-sum that cannot be recovered even if a given CSD changes its
mind and downsizes the degree of reshaping it wanted. That being said, to allow only reshaping to occur
in a precise period and not in progressive (positive) steps is a limitation to our model. Nevertheless,
the time frame, that is, the meaning of the "period" of the model, could easily be interpreted as a large
enough lapse of time such that reshaping indeed only occurs during one precise period, for each CSD.
Moreover, the results we are about to derive assume far-sighted CSDs, which discount the future very
little, hence it is unlikely that those results would be affected by the possibility of CSDs to reshape in
steps.
An important consequence for a game-theoretic point of view is that although our infinite game

consists in playing  over and over an infinite number of times, it does not fall into the usual
category of the repeated games because the population of CSDs able to make a decision at step 1) of
 is subject to change depending on previous history. For example, all subgames where all CSDs
have previously chosen to reshape (to such or such degree) consist solely of playing the price-setting game
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given this reshaping, that is, step 2 and 3 of , and are thus different from the first  played
in the game.

3.2 Two main theorems

3.2.1 Tacit collusion to delay reshaping

We will first show that even for large values of , when one would expect that the incentive to reshape
is too hard for the CSDs to resist (since they favour future revenues almost as much as the current lump
sum they would have to pay for the adaptation costs, and these future revenues tend to infinity when 
tends to 1), there is a subgame-perfect Nash equilibrium in which no CSD reshape when the ratio of the
costs 


of the involved CSDs satisfies a precise inequality. Indeed, denote by  = (    )

the function of the four different price-elasticities of the model defined by:

 =



=


2 − 



Then we have:

Theorem 2 Assume 1


 


 . Then there exists  ∈]0 1[ such that for any discount factor  ∈] 1[,
collusion for no reshaping can be sustained in a subgame perfect Nash-equilibrium. The result holds even
when price competition is assumed.

That is, there exists a subgame-perfect Nash equilibrium in which no CSD ever reshape when playing
it.

The proof of Theorem 2 is given in Annex 7.2.1 and uses the following trigger strategy ():

() Do not reshape if no player has reshaped so far. If another player has reshaped and you have
not reshaped, then reshape. At each price-setting game (step 2 ) play the unique Nash equilibrium, given
all the costs involved.

Remark 1: Since  =



=


2−

, the condition 1


 


  of the theorem can be re-

written directly in terms of the elasticities as 2


− 


 





2− . The condition for CSD 

to be dissuaded to reshape by CSD  own potential reshaping is:

  

We see that the larger the costs of CSD , the more likely this is going to occur. Indeed, CSD  can more
convincingly threaten to reshape and engage in tougher price competition if it is currently operating at
higher costs than if it is already efficient. Now, for the strategy profile to be a Nash equilibrium, a similar
inequality is required for CSD i costs, that is,    .

Remark 2: It is possible to determine explicitly a value of  for which Theorem 2 holds. Indeed,
(see Annex 7.2.2) we have that    is a necessary and sufficient condition for the inequality (∗) of
the Proof of Theorem 2 (given in Annex 7.2.1) to hold. we see that the result of the theorem holds for

 := max(1− 2
2



 1− 2

2



 

2−2−
2−2−


2−2−
2−2−

) if   2 − 2 and for  := max(1− 2
2



 1− 2

2



)

if   2 − 2.

Remark 3: Using the expression for  provided by Remark 2, we see that for adaptation costs high
enough, more precisely for   2 − 2 and   2 − 2, any further increase in both adaptation

costs translates into an increase of our value of , since  := max(1 − 2
2



 1 − 2

2



) and 1 − 2

2




(resp.1 − 2
2



) are increasing with  (resp. with ). This suggests that in that case, high adaptation
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costs do not increase but decrease the chance of collusion among CSDs. More precisely, the more costly the
adaptation, the higher the discount factor above which there can be collusion (in the proof), hence the less
likely collusion in that setting. This is rather counter-intuitive and stems from the fact that to make tacit
collusion possible in our non-cooperative setting, CSDs must be credible when they frighten the others to
reshape themselves should any CSD move towards reshaping. This tacit threat limits the benefits derived
from reshaping for any deviating CSD. Yet, if reshaping costs are too high, then the threat become less
credible, and the possibility of collusion based on that threat diminishes. Hence, a higher , that is, a
greater valuation for the future cash flows compared to the current ones, need to be assumed to make such
a threat credible. Now if   2−2 and   2−2, the effect of an increase in adaptation costs is not
clear-cut and, even assuming that no better collusion strategies can be designed than our trigger strategy,

depends on how the various parameters of the model compare to each other’s. Indeed, 2−2−
2−2−

is, when




 , decreasing in , hence if  := max(1 − 2
2


  1 − 2
2


  2−2−
2−2−


2−2−
2−2−

) = 2−2−
2−2−



max(1 − 2
2


  1 − 2
2


 
2−2−
2−2−

) =: 0 then an increase in  will first translate into a decrease of 

(until  reaches 0) indicating that higher adaptation costs increase the chance of collusion. This is of
course because, holding all other factors constant, the higher the adaptation costs a given CSD  faces
for itself, the less profitable it is for the CSD to reshape and thus the more likely it is going to collude to
delay the reshaping (see inequality (∗) in Proof of Theorem 2 given in Annex 7.2.1).

Remark 4: Under the conditions of Theorem 2, that is, when    and   , the strategy
() is, by the proof of the theorem, a Nash equilibrium for high discount factors. Another obvious Nash
equilibrium under such conditions is for both CSDs to reshape completely at the first period of the game.
Call this strategy (1). Now, it can readily be checked from the form of the one-period payoff function
that, for high discount factors, the strategy () is (strictly) Pareto-dominated by the strategy (1) if both
 and  are superior to 1. If both  and  are inferior to 1, then the converse holds: the strategy ()
(strictly) Pareto-dominates the strategy (1). Nevertheless we will prove in the discussion that in such a
case () cannot be a subgame perfect Nash equilibrium18 . When  is inferior to 1 and  superior to 1
or the reverse, then none of this two equilibrium Pareto-dominates the other, since one of the player is
always worse off in a situation than in the other.

Remark 5: Theorem 2 corresponds to a situation where higher aggregate costs per transaction
translates into higher profit margins for CSDs. Indeed, replacing  by its expression as a function of the
elasticities it can easily be shown that    is equivalent to the profit margin per transaction ∗ − e
being higher when no CSDs reshape than when both fully reshape.

3.2.2 A sufficient condition for immediate reshaping

Theorem 2 gives a condition, namely that    and   , under which there is possibility of
collusion not to reshape among CSDs, when they value the future relatively to the present enough. The
natural question is then to determine if, when the condition is not fulfilled, reshaping by at least one of
the CSD always happens. Interestingly, it turns out to be the case:

Theorem 3 Assume   . Then for any discount-factor close enough to 1, CSD  will always
completely reshape in any subgame perfect Nash equilibrium consistent with price competition. In par-
ticular, in the presence of price competition, the other CSD  cannot deter CSD  from reshaping in

any credible way. More precisely, if   (1 0)
2 − (1 1)

2, then for  ≥ 1 − 2
2



CSD  will al-

ways completely reshape, while if   (1 0)
2 − (1 1)

2, CSD  will always completely reshape for

 ≥ max(1− 2
2



 (10)

2−(00)2−
(10)2−(11)2−

).

18We need to establish that the conditions    and    are also necessary for () to be a subgame perfect
Nash equilibrium, and this will be a consequence of the next section ’s results. The fact that () as a subgame perfect Nash
equilibrium cannot Pareto-dominate (1) then easily follows).
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Proof. Since  ≥ 1− 2
2



, we have, by a reasoning similar to the proof of Theorem 2, that whatever

the degree   0 CSD  choose to reshape, or if it refrains from reshaping ( = 0),  = 1 is the profit
maximization choice of CSD , should it choose to reshape. Note that it does not mean, a priori, that
CSD  will choose to reshape: it could, in principle, as in Theorem 2, be dissuaded to do so by other
CSDs’ strategies.
The rest of the proof consists in showing this is never the case. Hence, the results will be that CSD 

does choose to reshape, and that it chooses  = 1, that is, a complete reshaping, when it does so.
Now, the worst credible punishment CSD  could inflict on CSD  in order to induce it not to reshape

is to reshape as soon as CSD  did by a degree ∗ () and engage in price competition afterwards,
that is, play repeatedly the Nash equilibrium of the price-setting game. This would yield a payoff for
CSD  of (1 

∗
 ()) instead of the (0 0) it received when it was not reshaping or of the (1 0) it

received when it chose to reshape, in all subsequent price-setting stage games of the repeated game. Since
(1 

∗
 ()) ≥ (1 1), if we show that CSD  will still prefer to reshape if it earns, from the moment

CSD  punishes it by also reshaping, (1 1) instead of (1 
∗
 ()), we will have proved that CSD 

best action is indeed to reshape. But from the proof of Theorem 2, we know that whenever the inverse
inequality of (∗) holds, CSD  is better off not playing the collusion strategy and reshaping, even though
CSD  will punish it by reshaping itself and by engaging in harder price competition afterwards.
Assume by contradiction that (∗) holds. Then since by the proof of Remark 2 of Theorem 2 we have

that (∗) holds for high values of  if, and only if,    , we immediately get a contradiction with
   . This proves the first part of Theorem 3.
To be more precise and prove the second part of Theorem 3, providing explicit values for the range

of  for which no infinite delaying of the reshaping decision can occur, we need to make a more precise
use of Remark 2 of Theorem 2 by separating two cases:

If   2−2 then for (∗) to hold for some , in particular for some  ≥ 1− 2
2



, we need    ,

which gives a contradiction with our assumption    . Hence (∗) does not hold for any  ≥ 1− 2
2



,

which gives our result than for  ≥ 1− 2
2



CSD  will always reshape.

If   2 − 2 then we need  ≤  for (∗) to hold for  ≥ 2−2−
2−2−

. Since by our assumptions

   , we deduce that for  ≥ max(1− 2
2



 2−2−
2−2−

), CSD  will always reshape. This concludes

the proof. ¤

In order to understand Theorem 3 better, we look at some of its consequences in a symmetric setting.
We first define explicitly what we mean by "symmetric":

Definition 2 A market is said symmetric if, and only if,  = ,  =  and  = . Two CSDs’
transaction costs are symmetric if, and only if,  = .

Remark: The condition  =  is not necessary for any of the propositions below. Indeed, an
interesting point to notice is that none of the conditions given in the theorem refers to the parameters 

and  , but only to elasticities. Hence, it is the sensitivity to prices more than the size of the market (of
which ( ) is a proxy) that matters. We included the condition  =  in the Definition to reflect a
completely symmetric demand function for both CSDs in a symmetric market.

Proposition 2 Assume that market and CSDs transaction costs are symmetric, that    and that

CSDs engage in price competition. Then for any discount-factor  ≥ 1− 2
2



, both CSDs will completely

reshape in any subgame perfect Nash equilibrium.

Proof. It is enough to show that the condition    of Theorem 3 is satisfied. Because  =
 this condition is equivalent to 1  . By definition of  =


2−

this is equivalent to

( + )  2 , which is true since by symmetry and the usual assumptions we have   
and  +   2 . Hence by Theorem 3 both CSDs will completely reshape in any subgame perfect
Nash equilibrium consistent with price competition. ¤
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Note the condition    only translates the property that a price level increase should lead
to a lower aggregate demand, as explained in Remark 2 of Section 2.3, and is hence a rather natural
assumption. From Proposition 2 we can easily get a similar result that predicts no collusion and the
reshaping of at least one of the two CSDs in case the CSDs transaction costs are not symmetric:

Proposition 3 Assume the market is symmetric and that   , and that CSDs engage in price

competition. Then for all discount-factor  ≥ max(1 − 2
2



 1 − 2

2



), the CSD with higher costs will

reshape in any subgame perfect Nash equilibrium.

Proof. Without loss of generality, we can assume CSD  has the highest costs, i.e.  ≥  . Then


≥ 1 while by Proposition 2 1  . Hence




  and Theorem 3 implies CSD  will reshape. ¤.

Admittedly, all these non-collusion results assume price competition in the subsequent periods. Nev-
ertheless, allowing for price collusion does not dissuade CSDs from reshaping, as can be seen in Annex 7.7.
Simply put, this is because allowing for price-collusion allows the CSDs to pocket the unit-transaction
cost-reductions instead of reflecting them in their prices.

3.2.3 Discussion of the main results

Theorem 2 asserts that for some range of parameters — more precisely, when    and    —
there can be a perpetual delaying of the reshaping decision by the CSDs, resulting in none of the CSDs
ever reshaping. This is the case because by not reshaping as long as the others do not reshape, a given
CSD avoids to pay the adaptation costs, while the extra-rent it would extract through cost-reduction and
earning market shares by reshaping seem no longer worth it when it knows that the other CSDs would
then also reshape and compete with it on the same grounds. Of course, there is a first mover advantage:
the first CSD to reshape would make more profits in the following period. But when the discount factor
exceeds a certain threshold, this short-term benefit becomes irrelevant since the high discount factor gives
an almost equal weight to the future than to the present.

Also worth noticing, the tacit collusion for not reshaping described by Theorem 2 holds for any value
of  higher than some threshold , which means no reshaping can potentially occur for far-sighted CSDs
which attribute a high value to future payoffs. Hence contrary to our original model of Section 2, where
the decision to reshape or not depended on the trade-off between paying now high adaptation costs and
benefiting more from transaction costs reduction later, or avoiding this investment now and bearing the
high costs per transaction in the subsequent periods of the model, the decision concerning reshaping
depends here entirely on the expected strategy of the other CSD19 .

The suboptimal implication of Theorem 2 in terms of efficiency and investors’ welfare should be
accessed keeping in mind that Theorem 2 does not indicate that the only credible (subgame perfect)
outcome is the one in which reshaping is indefinitely delayed: even under the assumptions that   
and    , there may be many more subgame perfect Nash equilibria. For example, one of these other
possible subgame perfect Nash equilibrium is the one were CSDs reshape by their respective optimal
degree as specified by Theorem 1 at the very first period of the model, and then set prices accordingly.
Call this strategy (1), and call () any strategy yielding a perpetually delayed reshaping. It can easily
be proved that strategy () never Pareto-dominates (1) as a Nash-equilibrium. Indeed by the previous
results if () is a NE it means that    and    . But for () to Pareto-dominate (1) we must
have, by Remark 4 of Section 3.2.1,   1 and   1. This implies      and     , a

19A comparison with the infinite version of our first model (Section 2), where the decision to reshape can only be taken
in the first period of the model, gives an insight of how much the decision to delay reshaping in Theorem 2 relies on the
mere possibility of CSDs to freely choose the time of their reshaping. Typically, in a setting where CSDs can only take the
decision to reshape at the first period of the model, not only would there be no tacit collusion to delay reshaping, but, if

 ≥ 1 − 2
2



— as is assumed in the Proof of Theorem 2 — then by Lemma 1 the reshaping would be complete (meaning

CSD  would choose  = 1).
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contradiction. On the contrary, we know by Remark 4 of Section 3.2.1 that if   1 and   1, which
is the case for example if costs are symmetric ( = ) and if () is a NE, that the strategy (1), which
implies reshaping in the first period, Pareto-dominates strategy (). Hence both player will always be
better off by reshaping immediately than by delaying ad infinitum the reshaping.
Besides, some other factors are likely to mitigate the results of Theorem 2:

� first, Theorem 2 applies only to the specific constellations of parameters satisfying the rather re-
strictive conditions that    and    . Moreover, we proved in Theorem 3 that these
conditions are also necessary, that is, if it ever happens that  ≥  or that  ≥ , then at
least one of CSD  or  will reshape, whatever the other CSD’s strategy: there can be no deterrence
for no-reshaping in that context, and () is not a subgame perfect Nash equilibrium anymore.

� second, Theorem 2 applies as such only for a market with no new entrants. A new entrant could
create its infrastructure by optimally adjusting it to T2S following a Greenfield approach, which
would be similar to a complete reshaping of an existing CSD. Its investment costs would play a
similar role as the adaptation costs in the model, while its transaction cost would be likely to be
less than the average cost of the market. Now, if we want to predict the outcome for the whole
CSD industry, then as noted previously in Section 2.3, we have to interpret CSD  as representing
the whole CSD industry, minus CSD . The new entrant CSD would drive down the average costs
for the whole settlement industry except CSD ,  . This dynamic effect of new entrance is thus
pushing the inequality   , which as we saw is necessary for collusion not to reshape among
existing CSDs, towards the opposite inequality, that is, towards  ≤ . As soon as this inequality
is satisfied, it is Theorem 3, instead of Theorem 2, which applies, meaning CSD  will itself re-shape
(whatever the other CSDs’ plans). Hence, new entrants have a positive effect on the decision of
reshaping by other, pre-existing, CSDs.

� third, because of the technical irreversibility of reshaping, the strategy supporting the continual
delaying of reshaping can only be a “pure” trigger strategy, hence the resulting equilibrium is very
fragile: should any player ever deviate from it, all players will reshape and the suboptimal situation
is replaced by the optimal one, where costs per transactions are reduced both for CSDs, through
a decrease of the costs in the model (e and e), and for market participant, through a decrease of
the prices ( and ), they are being charged.

Let us discuss further the condition under which tacit collusion is possible, but in terms of the various
price-elasticities involved instead of in terms of the costs as in Remark 1 of Theorem 2. By definition,
 = (    ) =


2− . Computing the first partial derivatives with respect to the

relevant parameters, we see that  is decreasing in both parameters  and  while it is increasing
in both cross-elasticities  and . Hence, the higher the substitution / competition effect, i.e. the
higher  and  compared to  and  , the more likely we end up with    (taking  and  as
given here), and hence with the possibility that CSD  can influence CSD  strategy by refraining from
reshaping but threatening to do so should CSD  reshape. If a similar condition holds for CSD  vis-a-vis
CSD , the result is a possible tacit collusion not to reshape. As noted in Remark 1 of Theorem 2, the
threat for CSD  to reshape (and punish CSD  by competing at lower prices) is only credible if CSD
 current costs are high (more precisely, if   


). The deterrence comes precisely from the fact that

should CSD  reshape, it will get costs similar to those of CSD  which will thus lose the competitive
advantage it had benefited from before. Now, the elasticities  and  are precisely what allow this
competitive advantage to be used. Hence, the higher the substitution effects, the more convincing CSD 
threat to reshape and draw down its costs, and the more likely the collusion, should a similar condition
hold for CSD  vis-a-vis CSD . Conversely, the lower the substitution effects, the less likely the threat
and influence of CSD  decision on CSD . The extreme case would be completely independent and non-
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competing CSDs, i.e.  =  = 0, then the decisions to reshape or not by the CSDs are completely
independent from one another and solely based on the respective costs.20

Hence our model provides the result, counter-intuitive at first sight, that greater competition can
actually hinder the reshaping process rather than favouring it. However, this result is based on the as-
sumption that substitution and thus competition effects are constant over time. We expect that explicitly
allowing for increasing substitution / competition effects over time, which is expected as a consequence
of the introduction of T2S, the CSD regulation and further harmonisation initiatives, would reverse this
result. We leave the explicit modelling of increasing competition over time to future research.

4 Introducing delayed observability of the reshaping decision

The previous theorems were derived in a setting where the decision to reshape of other CSDs is immedi-
ately observable by all the CSDs in the next step: this comes from our definition of the game in Section
3.1.2. For example, we proved that, in such a game, tacit collusion to delay infinitely the reshaping can
be sustained in a subgame perfect Nash equilibrium, even though reshaping would be done straight away
if the decision to reshape could only be taken at a single point in time like in the infinite version of the
model of Section 2. Important to note is that to design the trigger strategy () which is essential to the
proof of Theorem 2, CSDs need to be aware of other CSDs decision to reshape. But one could argue that
such an information is internal to the reshaping CSD and should not be known to the market (except by
interpreting possible price-signals).
Suppose we modify the rules of the game to allow a given CSD to become aware of the decision of

other CSD to reshape only 0 periods after that decision was taken. Then, a similar result holds in this
game of imperfect information, which provides some evidence of the robustness of Theorem 2 when the
decision to reshape or not become eventually known by the market, possibly after some lag.

Theorem 4 Assume 1


 


  and that the game is modified such that any given CSD only becomes

aware of the decision of other CSDs’ decision to reshape after playing 0 times the other stage-game.
Then there exists  ∈]0 1[ such that for any discount factor  ∈] 1[, tacit collusion for no reshaping can
be sustained in a subgame perfect Nash-equilibrium, even if we assume CSDs engage in price competition.

The Proof is given in Annex 7.2.3.

Remark: In the proof, inequality (∗∗) becomes21 (0 0)  (1 − 0)
 + 0( 1) when no

adaptation costs are assumed ( =  = 0). This assumption is only made in this Remark to allow to
solve (∗∗)22 :

  0

s

 − (0 0)


 − ( 1)

=: 

Hence the higher 0, i.e. the less observable the reshaping, the greater the value of  as obtained in the
proof of the theorem. This suggests23 that the less observable the reshaping, the more difficult it becomes
to sustain tacit collusion.

We now provide a theorem similar to Theorem 3 in which the decision to reshape always occurred in
a delayed observability setting.

20Similarly to this paragraph, Annex 7.8 shows more formally that the set of parameters for which tacit collusion is
sustainable in a high competition / substitution environment is larger than in a low competition / substitution environment.
21Note in passing that (0 0)  (1− 0) + 0( 1) is also a sufficient condition for (∗∗) to be true. Hence when

   then (∗∗) is also true, whatever the adaptation costs, and the proof of the theorem applies.
22 Indeed, there is no closed-form formula for solving general polynomials of degree more than 4 (Galois).
23This only suggests it, and does not prove it, since nothing indicates that the threshold obtained above is an optimal one

(that is, the lowest one). There may exist a threshold independent of 0 above which tacit collusion occurs in a subgame
perfect Nash equilibrium (possibly the strategy profile (0) defined in the proof of Theorem 4, or another strategy profile).
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Theorem 5 Assume   . Then for any high-enough discount-factor , CSD  will always completely
reshape in any subgame perfect Nash equilibrium consistent with price competition. In particular, the other
CSD  cannot deter CSD  from reshaping in any credible way.

Proof. First we prove that for a high-enough discount-factor , CSD , if it ever chooses to reshape,
will choose to reshape completely, that is, will choose  = 1.
By the proof of Theorem 4 we have that the profit of CSD , should it choose to reshape by some

degree , would be:


 () =

1− 0

1− 

 − 

2
 +

0

1− 
( 

∗
 ())

Note that, trivially, ( 
∗
 ()) is maximum for  = 1. We have to prove that 


 () is also maximal

for  = 1, knowing that 

 is a function of  too. From the expression of 

 () above we have that
for any  ∈ [0 1]:

(1− )
 ()− 0( 

∗
 ()) = (1− 0)

 − (1− )
2


Since (    ) is bounded, so is 

 . Furthermore 

2
 is also bounded, since 

2
 ∈ [0 ]. Hence

when  tends to 1, the right-hand side of this equation tends to 0, which proves that whatever ,
(1 − )

 () − 0( 
∗
 ()) tends to 0 when  tends to 1. Clearly, (1 − )

 () reaches its

maximum as a function of  whenever 
 () do so. Assume now by contradiction that 

 () is

maximum for a b  1. Then by applying the previous result to both  = 1 and  = b we get that both
(1− )

 (1)− 0(1 
∗
 (1)) and (1− )

 (b)− 0(b ∗ (b)) tends to 0 when  tends to 1, hence
the sum of these two quantities, that is,

(1− )(
 (1)− 

 (b))− 0((1 
∗
 (1))− (b ∗ (b)))

also tends to 0 when  tends to 1. But since ( 
∗
 ()) is maximum only at  = 1, and that b  1,

we have that (1 
∗
 (1))− (b ∗ (b)) =:   1, hence 0((1 

∗
 (1))− (b ∗ (b))) tends to  when

 tends to 1. Hence
(1− )(

 (1)− 
 (b))

tends to   0 when  tends to 1. In particular there exists a  such that (1 − )(
 (1) − 

 (b)) is
close enough to  to be strictly superior to 2 and hence strictly positive. Hence 

 (1)  
 (b), a

contradiction with the definition of b and the assumption that b  1. This proves that b = 1 and that

 () is maximum for  = 1.
Note that it does not mean, a priori, that CSD  will indeed choose to reshape: it could, in principle,

as in Theorem 4, be dissuaded to do so by the other CSD strategy.
The rest of the proof consists in showing this is never the case. Hence, the results will be that CSD 

do choose to reshape, and that it chooses  = 1, that is, a complete reshaping, when it does so.
Now, the worst credible punishment CSD  could inflict on CSD  in order to induce it not to reshape

is to reshape as soon as CSD  did by a degree ∗ () and engage in price competition afterwards,
that is, play repeatedly the Nash equilibrium of the price-setting game. This would yield a payoff for
CSD  of (1 

∗
 ()) instead of the (0 0) it received when it was not reshaping or of the (1 0) it

received when it chose to reshape, in all subsequent price-setting stage game of the repeated game. Since
(1 

∗
 ()) ≥ (1 1), if we show that CSD  will still prefer to reshape if it earns, from the moment

CSD  punishes it by also reshaping, (1 1) instead of (1 
∗
 ()), we will have proved that CSD 

best action is indeed to reshape. But from the proof of Theorem 4, we know that whenever the inverse
inequality of (∗) holds, CSD  is better off not playing the collusion strategy and reshaping, even though
CSD  will punish it by reshaping itself and engaging in harder price competition afterwards. Hence we
only need to prove that under our assumptions (that is, that   ), the inverse inequality of (∗) holds.
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   implies successively:

 −  0

(0 0)  (1 1)


 − (0 0)  

 − (1 1)

  1  0

s

 − (0 0)


 − (1 1)

0 

 − (0 0)


 − (1 1)

(0 0)  (1− 0)
 + 0(1 1)

for all discount factor . Now since (1−) tends to 0 when  tends to 1, we have that, for  high enough:

(0 0)  (1− 0)
 + 0(1 1)− (1− )

and this is precisely the inverse inequality of (∗).¤

We assumed in this section that the reshaping decision is not observable for 0 periods, but that it
became public knowledge after. Hence, one could argue that working under the assumption of complete
non-observability of the reshaping decision, where no other CSD than the reshaping CSD itself know about
its decision to reshape, would have a different effect on the possibility for CSDs not to reshape. However,
there are strong limits to the extent that CSDs can hide information on a crucial strategic decision such
as their adaptation to T2S. For example, most CSDs are either user-owned and thus largely transparent
to their users or publicly listed companies with certain transparency requirements. Furthermore, the
CSD adaptation to T2S may require some adaptation on the side of the CSDs’ clients, so CSDs usually
involve their clients in major changes to their IT infrastructure. Hence, their decision to reshape or not
is likely to be known to the market, possibly after some finite lag 0.

5 Analysing the question to join or not with the model

In the previous section we have been concerned exclusively with the modelling of the reshaping decision
for the CSDs which had chosen to join in the first place. Yet, what about also modelling the decision of
joining or not joining T2S?
We can adjust the previous model to address this question by changing the cost per transaction

e: instead of e = (1 − ) + 2 we change the interpretation of parameter  ∈ [0 1] and set
e = (1− ) + 2 . Hence,  = 0 corresponds to the decision not to join (and thus not to reshape),
yielding costs of e = . Any   0 corresponds to the decision to join T2S and to reshape by some
degree .The extreme case,  = 1, represents the decision to join and to completely reshape, yielding
e = 2 as before. Hence, the table which gives the relevant cost structures for the price-setting game
of each stage changes to:

period fixed costs e of CSD  cost per transaction e of CSD 
1 (1− ) + ( ) (1− ) + 2
2 (1− ) (1− ) + 2
... ... ...
N (1− ) (1− ) + 2

That is, the more -reshaping, the more the costs per transaction converge towards the T2S fees.
This is because (1 − ) + 2 is nothing else that a convex combination of the two types of costs,
the CSD  costs  and the T2S costs 2 .

Now, in case   2 , we obtain the fact that once a CSD has chosen to join T2S, the more it
reshapes, the more its costs per transaction increase. But this has no consequences for the equilibrium
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solutions, since if a CSD has (average) costs per transaction below the T2S fees, then in our model it will
choose  = 0 and thus not join T2S.

24 Abstracting from this corner solution, we will in everything that
concerns the modelling of joining or not joining always assume that

  2 

Note that we can apply our previous model and obtain similar results by just substituting every
occurrence of  by  − 2 (and, of course,  by  − 2) since (1 − ) + 2 = (1 − )( −
2)+ 2 . In particular, we get theorems similar to Theorem 2 and 3 of Section 3, but concerning the
decision to join or not to join T2S:

Theorem 6 Assume 1


 −2
−2

 . Then there exists  ∈]0 1[ such that for any discount factor
 ∈] 1[, collusion for not joining T2S can be sustained in a subgame perfect Nash-equilibrium, even if
price competition is assumed.

That is, there exists a subgame-perfect Nash equilibrium in which no CSD ever join T2S when playing
it. The corresponding subgame-perfect Nash equilibrium is of course the following trigger strategy (0):

(0) Do not join if no player has joined so far. If another player has joined and yourself has not
joined, then join. At each price-setting game (step 2 ) play the unique Nash equilibrium, given all the costs
involved.

Theorem 7 Assume  ≥ ( − 2) + 2. Then for any  ≥ 1− 2
2



, CSD  will always join T2S

in any subgame perfect Nash equilibrium consistent with price competition. In particular, the other CSD
 cannot deter CSD  from joining T2S in any credible way.

Hence, translating a parameter of the reshaping model allows to study the decision to join or not.
The model focuses on the possible transaction cost savings with T2S. There are other benefits of T2S for
the CSDs and their clients that are outside the scope of this model (see, e.g., Eurosystem [6]). They can
make participation in T2S beneficial independent of the direct settlement costs.

6 Conclusion

In this article we used a game theoretic approach to model the strategic decision of European CSDs to
reshape towards T2S, in both a finite and in an infinite setting, and noted that a similar model and
discussion can also apply for the CSD’s decision to join or not to join T2S.
In the finite setting, we obtained an explicit formula for the degree of optimal reshaping as well as

for the optimal prices set at each period. Trying to recover the fixed adaptation costs by increasing the
price per transaction results in decreasing profits for CSDs compared with the optimal solution.
In the infinite setting we provided a condition for the model parameters under which two CSDs, which

would normally reshape in the previous setting, delay their reshaping infinitely many times because they
are hence able to avoid paying adaptation costs while the incentives to reshape (cost-reduction and earning
market shares) are reduced by this tacit collusion. This result is not robust though, in particular with the
possibility of new entrants on the market who may push average costs lower and force the pre-existing
CSDs to reshape. Indeed, we provide a condition under which a given CSD will always reshape, no matter
whether the other CSDs are reshaping or not. Decreasing average costs for the whole market push towards

24When the individual CSD’s costs are below the T2S fees, the CSD will not join T2S in this second model because joining
and reshaping could only result in higher costs. Since there may be non cost-based incentives for a given, cost-efficient
CSD to join, the second model does not capture properly the decision about reshaping for all CSDs. Hence, we used the
first model, which starts from the subset of CSD having joined T2S (no matter the reasons), as a more appropriate way to
express the degree of optimal reshaping.
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this condition, and away from tacit collusion. Furthermore, this result is robust with respect to a delayed
observability of the reshaping decision.
In particular the results in the infinite horizon model provide interesting insights about an optimal,

non-reversible investment decision. These results are applicable in a wider Industrial Organisation context
and not limited to the reshaping decision of CSDs.
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7 Annex

7.1 Computations for the dynamic N-period model for the degree of optimal
reshaping

7.1.1 Expression of the prices at equilibrium

Profits for CSD  in a period where the fixed costs are e and the costs per transaction are e are:

 = ( − e)− e

= ( −  + )( − e)− e

Now




= ( −  + ) + (−)( − e)

= −2 +  +  + e

Hence 


 0 if, and only if,  
1
2

( +  + e). This proves that the best-response ∗ ()
of CSD  to a price  from CSD  is:

∗ () =
1

2
( + e + )

Denoting by (∗  
∗
 ) the equilibrium prices of the stage-game , we have:

½
∗ = ∗ () =

1
2

( + e + )

∗ = ∗ () =
1

2
( +  e + )

Hence

∗ =
1

2
( + e + (

1

2
( +  e + )))

4
∗
 = 2 + 2e + ( +  e + )

(4 − )
∗
 = 2 + 2e +  +  e

∗ =
1

4 − 
(2 + 2 e +  +  e)

Similarly,

∗ =
1

4 − 
(2 + 2 e +  + e)

These formulas define the equilibrium prices only when they are superior to the costs involved. Indeed,
if ∗  e then CSD  optimal response is not to settle any transactions. We will always assume, in what
follows, that this is not the case, i.e. that it is always more profitable for a CSD to settle a transaction
than to refuse to settle it. This allows to get rid of (unrealistic) corner solutions. Hence, we will always
assume ∗ ≥ e and ∗ ≥ e for any costs involved where ∗ = ∗ (e e) and ∗ = ∗ (e e) are the
expressions, dependent on the cost level (e e), given above. This assumption is thus a joint set of
assumptions on the parameter of the model and will be used in other part of the article.
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7.1.2 Expression of the profits at equilibrium

Replacing in the expression of the profits  by ∗ () gives:

(
∗
 () ) = ( −  + )( − e)− e

= ( −
1

2
( + e + ) + )(

1

2
( + e + )− e)− e

=
1



µ
1

2
( − e + )

¶2
− e

Then replacing  by its expression at equilibrium yields:

 =
1

4

¡
 − e + 

¢2 − e

=
1

4

µ
 − e +


4 − 

(2 + 2 e +  + e)
¶2
− e

=
1

4
( +


4 − 

(2 + )

+(
2

4 − 
− )e +


4 − 

e)2 − e

= (
1

2
√

( +


4 − 

(2 + ))

+

√


4 − 
e +

1

2
√

(


4 − 

− )e)2 − e

Now

1

2
√

(


4 − 

− ) =

√

2
(
 − 4 + 

4 − 

)

=
√
(

 − 2
4 − 

)

= −√(
2 − 
4 − 

)

Let

 =
1

2
√


( +


4 − 
(2 + ))

 =

√


4 − 

 =
√


2 − 
4 − 

Now profits can be written in a very compact way as:

 = ( + e −f)2 − e

Note in passing that  +  e − e is positive for any costs (e e) involved, because by the above
 + e −e =  − e = 1


 ≥ 0 by assumption (). This fact will be used later.

Total profits, as defined in Section 2.4.3, are thus:


 = (1 +  + + −1){( + ((1− ) + 2)−((1− ) + 2))

2−(1− )}

−( )

= e( + ((1− ) + 2) − ((1− ) + 2))
2 − e(1− ) − ( )
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with

e =
½

 if  = 1
1−
1− if 0 ≤   1

7.1.3 Expression of the degree of reshaping chosen and Proof of Lemma 1 and Theorem 1

Now assuming in the previous expression of 
 that ( ) = 

2
 and  = 0 for simplicity,

we can compute the derivative of 
 with respect to the degree of reshaping :





= 2e( + ((1−) + 2)−((1− ) + 2))− 2

Hence



 0 is equivalent to:

( + ((1− ) + 2) − ( + 2))) 
 − e22



e


We can now prove Lemma 1, which is re-state here for convenience for the reader:

Lemma 1 Assume  
e22

 . Then if all CSDs are playing the Nash equilibrium of each following
stage-game of the repeated game, the best-response function ∗ () is the constant function ∗ () = 1,
which represents a throughout reshaping decision from CSD  whatever the degree  CSD  choose to
reshape.
Proof of Lemma 1:
If   e22

 then the sign of



indicate that 

 is first decreasing, then increasing, hence its
maximum is reached either at  = 0 or at  = 1 (and possibly at both). But


 (0 )  

 (1 )

is successively equivalent to

e( + ((1− ) + 2) − ( + 2))
2  e( + ((1− ) + 2) − 2)

2 − 
e( + ((1− ) + 2) − ( + 2))

2 +   e( + ((1− ) + 2) − 2)
2

But the last line is true since we can write:

e( + ((1− ) + 2) − ( + 2))
2 + 

≤ e( + ((1− ) + 2) − ( + 2))
2 + e22

 )

≤ e{( + ((1− ) + 2) − ( + 2))
2 + ()

2}

≤ e{( + ((1− ) + 2) − ( + 2) + ())
2

= e{( + ((1− ) + 2) − 2)
2

The last inequality above was obtained using 2 + 2 ≤ (+ )2 for any ,  such that  ≥ 0. Here
 =  + ((1 − ) + 2) − ( + 2) ≥ 0 (since this is equal to a positive factor times the
quantity at equilibrium of the stage game) and  =  ≥ 0. Note that this result is independent of the
level of reshaping  chosen by the other CSD . This concludes the proof of Lemma 1. ¤

Assume now that   e22
 . Then the maximum ∗∗ () of 


 () where  is not restricted to

[0 1] is:

∗∗ () =
e

 − e22


( + ((1− ) + 2) − ( + 2)))
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Note ∗∗ () can be greater than 1 or smaller than 0. Letting  =


−22


, we have

∗∗ () = ( + ((1− ) + 2) − ( + 2)))

= ( + ( + 2) − ( + 2))− 

Because  
e22

 , 

 is first increasing, then decreasing, and reaches its (unrestricted) maximum

in ∗∗ (). It is then easy to see that the best-response function ∗ () is 1 if ∗∗ ()  1 and 0 if
∗∗ ()  0, whereas it is ∗∗ () when ∗∗ () ∈ [0 1]. This can be summarized by writing:

∗ () = min(1max(0 
∗∗
 ()))

that is,
∗ () = min(1max(0 ( + ( + 2) − ( + 2))− ))

We can now proceed to prove Theorem 1.

Proof of Theorem 1:
We will use Lemma 1 extensively to prove part (ii), (iii) and (iv) of the theorem.

(ii) Assume   e22
 and   e22

 . Then by Lemma 1 applied to both CSD  and  we have
∗ () = 1 for any  and ∗ () = 1 for any . Hence at equilibrium ∗ = 1 = ∗ .

(iii) Assume   e22
 and   e22

 . Lemma 1 applied to CSD  gives ∗ () = 1 for any
, and thus at equilibrium CSD  plays its best-response (as previously computed above) ∗ () =
min(1max(0 ( + ( + 2) − ( + 2)))))

(iv) is similar to (iii) interchanging the roles of  and . Indeed, if we assume   e22
 and

  e22
 . Lemma 1 applied to CSD  gives ∗ () = 1 for any  , and thus at equilibrium ∗ () =

min(1max(0 ( + ( + 2) − ( + 2)))))

We are thus only left with the task of proving point (i) of Theorem 1.

Assume  
e22

 and   e22
 . Consider the solution (

∗∗
  ∗∗ ) obtained from solving:

½
∗∗ = ∗∗ (

∗∗
 )

∗∗ = ∗∗ (
∗∗
 )

That is, we solve for a Nash equilibrium the unrestricted game. The system is equivalent to

½
∗∗ = ( + ( + 2) − ( + 2))− 

∗∗


∗∗ = ( + ( + 2) − ( + 2))− ∗∗

Substituting ∗ by its expression in function of 
∗
 (given by the second equation) in the first equation

of the system gives:

∗∗ = (+(+2)−(+2))− ((+(+2)−( + 2))−)

∗∗ =
( + ( + 2) − ( + 2))− ( + ( + 2) − ( + 2))

1− 

This is the optimal, unrestricted, degree ∗∗ of reshaping chosen by CSD  at equilibrium, assuming
 6= 1

25 . A similar formula, interchanging the role of  and , holds for ∗∗ .
Now, whenever ∗∗ and ∗∗ both belong to [0 1], the solution (∗  

∗
 ) of the restricted game, that is,

where ∗ and ∗ are constraint to belong to [0 1], is just the solution of the unrestricted game. That is,

25There is, of course, a graphical interpretation to the condition 1 6=  . Indeed, if 1 =  then
the two best-response functions ∗∗ () and ∗∗ () are parallel when drawn in the ( )-plane, hence they either intercept
in all their points or in none. A discussion on what happens in this precise case is carried out in Appendix 7.1.4. For the
rest of the article we always assume 1 6=  .

118



(∗  
∗
 ) = (

∗∗
  ∗∗ ). This intuitive result can be proved more formally: by definition, (

∗∗
  ∗∗ ) solves the

system ½
∗∗ = ∗∗ (

∗∗
 )

∗∗ = ∗∗ (
∗∗
 )

Now, because ∗∗ (
∗∗
 ) = ∗∗ belongs to [0 1], ∗ (

∗∗
 ) = min(1max(0 ∗∗ (

∗∗
 ))) = ∗∗ (

∗∗
 ) = ∗∗ .

Similarly, ∗ = ∗∗ .
This proves Theorem 1 as such. We know move to provide a complete resolution (including corner-

solutions) of the Nash equilibrium of game.

We have proved previously that

∗∗ () = ( + ( + 2) − ( + 2))− 

For convenience, let
 = ( + ( + 2) − ( + 2))

and
 = 

Hence
∗∗ () = − 

Let us look at the signs of the quantities involved. Since  
e22

 , we have that  =


−22


 0, and

by the  applied with the costs (+ 2   + 2), we have +( + 2)− (+ 2)  0.
Hence,   0. Similarly, because   0 and that the  applied with the costs ( + 2  2) gives
 + 2 − ( + 2)  0, we get that ∗∗ (1) = −   0.

Similarly, define e and e such that
∗∗ () = e− e

for all . We also have, through the , that e  0 and e− e  0.

We can now proceed to a disjunction aimed at capturing all the different types of corner solutions
that could occur.
First assume   1 and e  1. In that case ∗ () = ∗∗ () for all  ∈ [0 1] and similarly

∗ () = ∗∗ (). Hence both best-response functions are straight-lines on their whole domain of definition
(which is [0 1]), and since ∗ () is below ∗ () at  = − while it is above at  = , the two segments

intersect in some point in the interior of [0 1]2. Because the unrestricted best-responses ∗∗ (), 
∗∗
 ()

coincide with ∗ (), 
∗
 () this point is precisely (

∗∗
  ∗∗ ). This proves that the Nash equilibrium, in

that case, is unique, and is (∗∗  ∗∗ ).
Assume   1 and e  1. Consider the intersection of the two best-response functions with the

straight line  of equation  =  − . Because ∗ (1) =  − ,  intersects ∗ () at the point of
coordinate (− 1). Assume ∗∗ (−) ≥ 1. Then ∗∗ () and ∗∗ () do not intersect in the interior of
[0 1]2 and ∗ ( − ) = 1, implying that the unique intersection point of the two best-response function
is precisely ( −  1), that is, (∗∗ (1) 1). Hence, (

∗
  

∗
 ) = (∗∗ (1) 1) is the unique NE. Assume now

∗∗ (− )  1. Then ∗ () is below ∗ () at  = −  while it is above at  = , and as in the case
where   1 and e  1 we conclude that (∗∗  ∗∗ ) is the unique NE.
Assume   1 and e  1. By the same reasoning as above, interchanging the role of  and , we

get that if ∗∗ (e − e) ≥ 1, then the unique NE is (∗  ∗ ) = (1 ∗∗ (1)) whereas if 
∗∗
 (e − e)  1, it is

(∗  
∗
 ) = (

∗∗
  ∗∗ ).

The last case is when   1 and e  1. To tackle it we need further disjunctions.
First assume e − e  1 and  −   1. This implies that ∗∗ ()  1 and ∗∗ ()  1 for all  in

[0 1] and all  in [0 1]. Hence the two best-response functions are ∗∗ () = 1 and ∗∗ () = 1 for all 
in [0 1] and all  in [0 1]. They intersect in the unique NE, at (

∗
  

∗
 ) = (1 1).
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Second assume e − e  1 and  −   1. This implies that ∗∗ ()  1 for all  in [0 1] and
thus ∗∗ () = 1 for all  in [0 1]. This best-response thus intersect ∗∗ () at a unique NE, which is
(∗  

∗
 ) = (

∗∗
 (1) 1).

The third case, in which e− e  1 and −   1, is similar to the second case, interchanging  and
. It thus yields a unique NE at (∗  

∗
 ) = (1 

∗∗
 (1)).

The last case is when e − e  1 and  −   1. Let  be the point of coordinate ( 1) such that
∗ ( + )  1 for any   0 whereas ∗ () = 1. Similarly, let  be the point of coordinate (1 ) the
point such that ∗ ( + )  1 for any   0 whereas ∗ () = 1. Because  solves 1 = ∗∗ () and

 solves 1 = ∗∗ (), we easily get  =
−1
 and  = −1

 . It is then convenient to carry out the

discussion depending on the relative value of  compared to −  and of  compared to e− e.
If e− e   and −   , then there is a unique NE at (

∗
  

∗
 ) = (

∗∗
 (1) 1).

If e− e   and −   , then there is a unique NE at (
∗
  

∗
 ) = (

∗∗
  ∗∗ ).

If e− e   and −   , then there is a unique NE at (
∗
  

∗
 ) = (1 

∗∗
 (1)).

If e − e   and  −   , then each of the previous points, that is, (
∗∗
 (1) 1), (

∗∗
  ∗∗ ) and

(1 ∗∗ (1)), are NE, and these are the only NE, since the best-response functions intercept in exactly these
three points.
This concludes the disjunction. ¤

7.1.4 Case where 1 = 

We assume in this section 1 =  and re-use the notations of the previous section. The slope

of ∗∗ () relatively to the plane ( ) is thus precisely
−1
 and the slope of ∗∗ () in this same plane is

f−. Hence the slopes are equal and the (unrestricted) best-response are parallel if, and only if, −1 = −e,
i.e. if and only if 1 = e. Because  =  and e =  , this is equivalent to 1 =  ,
that is, precisely our condition. Here we discuss what happens for ∗ () and ∗ () in that case — the
rest of the article always making the implicit assumptions that 1 6=  .
We can separate three cases.
Assume first that e  

 . This means the best-response straight-line ∗∗ () is "above" ∗∗ () in
the ( ) plane. Now if ∗ (1) ≥ 0 the best-response ∗ () and ∗ () intersect in a single NE at
(∗  

∗
 ) = (

∗∗
 (1) 1). Otherwise, they do not intersect and there is no NE.

Assume that e  
 . This means the best-response straight-line ∗∗ () is "below" ∗∗ () in the

( ) plane. Now if ∗ (1) ≥ 0 then the best-response ∗ () and ∗ () intersect in a single NE at
(∗  

∗
 ) = (1 

∗∗
 (1)). Otherwise, they do not intersect and there is no NE.

Assume e = 
 . Then the two best-responses form a single straight-line and any point of ∗∗ () in

the interior of [0 1]2 is a NE. There is first an infinity of NE in that case.
To conclude, note that in this case too the  still implies   0 and  −   0 as well as e  0

and e− e  0, hence there are no other cases to explore than the one previously stated.

7.2 Proofs of Section 3 results and Theorems

7.2.1 Proof of Theorem 2

Assume 1


 


  and consider the following trigger strategy ():

() Do not reshape if no player has reshaped so far. If another player has reshaped and yourself has
not reshaped, then reshape. At each price-setting game (step 2 ) play the unique Nash equilibrium, given
the costs.

To prove this strategy profile yields a subgame-perfect Nash equilibrium, we show it satisfies the
definition of a subgame-perfect Nash equilibrium, that is, it induces a Nash equilibrium on every subgame
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of the whole game. The whole game consists of two types of subgames: those where at least one player
has reshaped in one of the previous periods, and those where no player has reshaped so far.
Consider a subgame of the first type. Then the strategy induced by () on this subgame consists of

reshaping at stage 1) in case it has not been done yet, and playing the Nash equilibrium of the price-
setting game for each stage game. As argued in Section 2.4, this constitutes a Nash equilibrium of the
subgame. Indeed, since player’s actions do not take the past into account anymore and play repeatedly
the Nash equilibrium of the price setting game, any player unilaterally deviating from it would not be
better of, by definition of a Nash equilibrium of the stage game and of the payoff for the subgame.
Consider a subgame of the second type. Then the strategy profile induced by () on this subgame

is precisely () itself, and in particular it implies not to reshape at stage 1) of the first period of the
subgame, since no one has ever reshaped before. Now does it constitutes a Nash equilibrium of the
subgame? Consider first the value  of playing this induced strategy for player , assuming all other
players also play it.  is equal to the sum of the immediate payoff (0 0) plus the discounted value of
playing this strategy on the next periods of the subgame - which happen conveniently to be equal to our
whole subgame. Hence we can write

 = (0 0) + 

which yields

 =
(0 0)

1− 
Now assume player  would unilaterally deviate from this strategy by reshaping to some extent   0.
This entails some immediate reshaping costs 

2
 . Since in the first period of our subgame other players

do not reshape, CSD  immediate payoff ends up being ( 0) − 
2
 . But in the following periods

all CSDs also reshape and CSD  profit is ( 
∗
 ()). Hence the total profits 

 () obtained from
unilaterally deviating from the induced strategy by playing   0 at step 1) of the first period of the
subgame are


 () = ( 0)− 

2
 + ( 

∗
 ()) + 2( 

∗
 ()) + 

= ( 0)− 
2
 +



1− 
( 

∗
 ())

which can be written as:


 () = (+(+2)−((1−)+2)))

2+


1− 
(+2−((1−)+2)))

2−
2






=2(+(+2)−((1−)+2)))+

2

1−
(+2−((1−)+2)))−2

Rearranging the expression we see that



 0 if, and only if:

( −
2

2


1− 
)  (

1

1− 
 + ( +

1

1− 
2) −

1

1− 
( + 2))

Now assuming   1 − 2
2



yields  − 2

2


1−  0. Hence the maximum of 
 is attained either at

 = 0 or at  = 1. To decide which value of  yields this maximum we just have to compare 
 (0)

with 
 (1). Assume also  

2
2


1− , that is, the similar condition for CSD ; then, because Lemma 1
applies for CSD  (note it does not apply as such for CSD ), a complete reshaping ( = 1) is always
more appropriate for CSD , whatever the CSD  decision concerning its own degree of reshaping . In
particular ∗ (0) = ∗ (1) = 1, which we will use below.
We will prove that the maximum of 

 is attained at  = 1 using a argument inspired from the
proof of Lemma 1 (see Annex 7.1.3). Indeed, 

 (0)  
 (1) is successively equivalent to

(0 0) +


1− 
(0 

∗
 (0))  (1 0) +



1− 
(1 

∗
 (1))− 

(0 0) +


1− 
(0 1)  (1 0) +



1− 
(1 1)− 
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Setting for convenience:

 =  + ( + 2) − ( + 2))

 =  + 2 − ( + 2))

0 =  + ( + 2) − 2)

0 =  + 2 − 2

this amounts to
2 +



1− 
2  02 +



1− 
02 − 

Since  
2

2


1− , this last line is implied by

2 +


1− 
2  02 +



1− 
02 −

2
2


1− 

But this later condition is equivalent, given that
2

2


1− = (1 +

1− )

2


2
 , to

2 + 2
2
 +



1− 
(2 + 2

2
 )  02 +



1− 
02

which is always true because

½
2 + 2

2
 = 2 + ()

2 ≤ (+ )
2 = 02

2 + 2
2
 = 2 + ()2 ≤ ( + )2 = 02

(this is the case because both  and  are nonnegative).
This prove that 

 is maximum for  = 1.

Hence not reshaping and conforming to the induced strategy in the subgame yields a higher payoff
than deviating from the strategy profile for player  if

  
 (1)

idem est if
(0 0)

1− 
 

 (1) = (1 0)−  +


1− 
(1 1)

which is equivalent to

(0 0)  (1− )((1 0)− ) + (1 1) (∗)
Now if (0 0)  (1 1), then there exists  ∈]0 1[ such that for any discount factor  ∈] 1[, in-
equality (∗) is true. Indeed, when  tends toward 1, the right-hand side of (∗) tends to (1 1), so if
(0 0)  (1 1), then, since this inequality is strict, there exist a  ∈]0 1[ such that

(0 0)  (1− )((1 0)− ) + (1 1)  (1 1)

and then any  ∈] 1[ also satisfies this inequality.
But (0 0)  (1 1) is equivalent to

 + ( + 2) − ( + 2)   + 2 − 2

idem est
 −   0

which is precisely the condition 


 


. Hence if 


 


, CSD  will not find it profitable to deviate

from the strategy induced by () on our subgame. We have to assume similarly that







such that

CSD  will not find it profitable neither. Hence, under the assumptions of the Theorem, the strategy
induced by () is a Nash equilibrium of the subgame.
This concludes the proof that () is a subgame-perfect Nash equilibrium of the whole game.¤
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7.2.2 Proof of Remark 2 concerning Theorem 2

We want to derive from the proof of Theorem 2 an explicit value for . Setting for convenience:

 =
p

(0 0) =  + ( + 2) − ( + 2)

 =
p

(1 0) =  + ( + 2) − 2

 =
p

(1 1) =  + 2 − 2

inequality (∗) of the proof of Theorem 2 is equivalent to:

2  (1− )(2 − ) + 2

2 −2  (2 −2 + )− 

(2 − 2 − )  2 −2 − 

If   2 − 2 then (∗) is thus equivalent to:

 
2 −2 − 
2 − 2 − 

This is only possible for at least one value of  if 2−2−
2−2−  1 idem est if 2−2−   2−2− ,

which amounts to   , that is, to  −   0, which is true since by assumption   . (∗)
then holds for any   2−2−

2−2−
. Hence looking at the Proof of Theorem 2 again we see that setting

 := max(1 − 2
2



 1 − 2

2



 2−2−
2−2−


2−2−
2−2−

) gives an explicit value for the  mentioned in the

theorem.

If   2 − 2 then (∗) is equivalent to:

 
2 −2 − 
2 − 2 − 

This only happens for all large enough values of  if 2−2−
2−2−

≥ 1 idem est if 2−2− ≤ 2−2−,

which amounts again to the assumption  ≤ . Then it is here enough to set  := max(1− 2
2



 1−

2
2



) as an explicit value for .

So in both situation we see that (∗) holds for all values of  close enough to 1 if, and only if,   .
More precisely we proved that    is equivalent to: "for any  there exists  ∈]0 1[ such that for
any  ∈] 1[, (∗) holds."
This Remark will be useful for the proof of Theorem 3.

Note in passing that 2−2−
2−2−

can be simplified by rewriting it as:

( −)( +)− 
( − )( + )− 

=
( − )− 

(2 + ( + 22) − 22)− 

7.2.3 Proof of Theorem 4

Let 0 be the time necessary for a given CSD to become aware of another CSD’s reshaping. We adapt
the proof of Theorem 2 to this new game of imperfect information by using the following strategy (0

):

(0
) If it is not common belief that at least one player has reshaped so far, then do not reshape and

play what you believe is the Nash equilibrium of the price-setting game (that is, play the Nash equilibrium
of the price-setting game where costs corresponds to costs without reshaping for all of the players). If
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it is common belief that some player has reshaped, then reshape completely and always play the Nash
equilibrium of each price-setting game.

To prove this strategy profile yields a subgame-perfect Nash equilibrium, we show, as in the proof of
Theorem 2, that it satisfies the definition of a subgame-perfect Nash equilibrium, that is, it induces a Nash
equilibrium on every subgame of the whole game. The whole game consists of two types of subgames:
those where it is known by all CSDs that at least one CSD has reshaped in one of the previous periods,
and those where no CSD is commonly known to have reshaped so far.
Consider first a subgame  of the first type. Then the strategy induced by (0

) on the subgame 
consists of reshaping at stage 1) of the first stage-game  of  in case it has not been done yet, and
then playing repeatedly the Nash equilibrium of the price-setting game at each subsequent stage-game.
Consider a given CSD  and assume all other CSDs than  are playing according to the induced strategy.
We proceed to determine CSD ’s best-response — the goal being to prove that ’s best-response is also
to conform to the induced strategy.
First, since in the subgame  other CSDs are repeatedly playing the Nash equilibrium of the price-

setting game, it is easy to see that CSD ’s best strategy is to play each time the Nash equilibrium of
the price-setting game given its costs, regardless of the degree  of reshaping it had possibly chosen
and whenever it had possibly chosen to reshape. Indeed, if CSD  deviates in at least one period from
playing the Nash equilibrium of the price-setting game, then, by definition of the Nash equilibrium of the
price-setting game, CSD  profits on this period would be lower, and so will be its profits for the whole
game, since the profits for the whole game are just the discounted payoffs of the profits at each stage
game. Hence, in any of its best-responses, CSD  will always choose to play the Nash equilibrium of each
price-setting game.

Second, by Lemma 1, if  
2

2



, CSD  cannot avoid to reshape at some point. Indeed, Lemma 1

for  
2

2



predicts a higher profit for CSD  if it chooses to reshape in the first period of the model

than if it choose to never reshape. Note that this does not imply, as such, that the optimal outcome is
to reshape immediately (that is, in the first period of the subgame  ), since Lemma 1 only compares
the outcome of reshaping in the first period with no reshaping at all. But this proves that reshaping
must indeed occurs in any best-response to other CSDs’ strategy (possibly not in the first period of the
subgame but in a later period). All that is left to prove is that the reshaping is complete (meaning  = 1
is chosen) and that it occurs in the first period of the subgame  , which we will call period 0. Let 0 be
the period in which reshaping occurs.
By Lemma 1 again, but applied to the subgame of  starting at time 0 in which CSD  choose to

reshape, we see that, because  
2

2



,  = 1 is optimal. Hence reshaping, when it occurs, is always

complete.
Assume that reshaping occurs at a period 0  0. Then the additional profits from reshaping one

period earlier would have been:
− +  + 

where  is the additional profits in one period obtained from a low cost situation compared to a high
cost situation, idem est

 = ( + 2 − 2)
2 − ( + 2 − ( + 2))

2

= 2( + 2 − 2)− ()
2

= {( + 2 − 2) + ( + 2 − (2 + ))}

It can be seen, either from the first expression or from the last one (sum of two positive quantities),
than   0. Hence, for any  satisfying 1    1 − 


, we have − +  +   0, a contradiction

since we assumed  was playing its best-response. We conclude that the reshaping occurs at time 0 in
 . Hence CSD ’s unique best-response is to conform too to the induced strategy. This shows that the
strategy (0

) induces a Nash equilibrium on any subgame of the first type.

Consider now a subgame  of the second type. Then the strategy profile induced by (0
) on this

subgame is precisely (0
) itself, and in particular it implies not to reshape at stage 1) of the first period
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of the subgame, since no one has ever reshaped before. Now does it constitute a Nash equilibrium of the
subgame? Consider first the value  of playing this induced strategy for CSD , assuming all other CSDs
also play it.  is equal to the sum of the immediate payoff (0 0) plus the discounted value of playing
this strategy on the next periods of the subgame - which happen conveniently to be equal to our whole
subgame. Hence we can write

 = (0 0) + 

which yields

 =
(0 0)

1− 

Now assume CSD  would unilaterally deviate from this strategy by reshaping to some extent   0.
Since in the 0 following periods of the subgame  other CSDs do not reshape and play the Nash
equilibrium of the price-setting game in which they are unaware of CSD  new costs, the payoff at each
of these periods is denoted by 

 where the index  stands for "abnormal", the abnormality being that
other CSDs do not know the true costs of CSD  and are thus in reality not playing the Nash equilibrium
of the relevant price-setting game. But after 0 periods all CSDs also reshape and CSD  profit is then
only ( 

∗
 ()). Hence the total profits 


 () obtained from unilaterally deviating from the induced

strategy by playing   0 at step 1) of the first period of the subgame is:


 () = 

 − 
2
 + 

 + + 0−1
 + 0( 

∗
 ()) + 0+1( 

∗
 ()) + 

=
1− 0

1− 

 − 

2
 +

0

1− 
( 

∗
 ())

The maximum value of 
 assuming a given  and that other CSDs follow the induced strategy could be

computed explicitly, then 
 () could be derived with respect to  to find its maximum with respect

to  and the best-possible deviation thus obtained: this was the method of the proof of Theorem 2. But
to avoid additional computations in this proof we will use the fact that 

 is bounded, since the general
payoff-function (    ) is itself bounded.
No reshaping and conforming to the induced strategy in the subgame yields a higher payoff than

deviating from the strategy profile for CSD  if, and only if,

  
 ()

i. e.:
(0 0)

1− 

1− 0

1− 

 − 

2
 +

0

1− 
( 

∗
 ())

which is equivalent to

(0 0)  (1− 0)
 − (1− )

2
 + 0( 

∗
 ()) (∗)

Now notice that for  ≥ 2
2



, applying Lemma 1 to the infinite subgame of our game starting when CSD

 becomes aware of CSD  reshaping decision yields ∗ () = 1 for all . Note that the same Lemma

cannot be applied as such to CSD , even if  ≥ 2
2



(because of the first 0 periods of the subgame in

which CSD  benefits from a first-mover advantage). We will actually avoid to determine explicitly the
reshaping degree of CSD  here26 .
Since ∗ () = 1 inequality (∗) is equivalent to:

(0 0)  (1− 0)
 − (1− )

2
 + 0( 1) (∗∗)

Now if (0 0)  ( 1), then there exists  ∈]0 1[ such that for any discount factor  ∈] 1[,
inequality (∗∗) is true. Indeed, when  tends toward 1, the right-hand side of (∗∗) tends to ( 1)

26 Indeed, for this particular proof we do not need to find  explicitly, although it will be shown in the proof of Theorem
4 that  = 1 for values of  high enough.
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because 
 is bounded and 1 − 0 tends to 0. So if (0 0)  ( 1), then, since this inequality is

strict, there exist a  ∈]0 1[ such that

(0 0)  (1− 
0

)(1 0)− (1− )
2
 + 

0

( 1)  ( 1)

and then any  ∈] 1[ will also satisfies this inequality.
But (0 0)  ( 1) is equivalent to

 + ( + 2) − ( + 2)   + 2 − ((1− ) + 2)

which is equivalent to
 −   0

idem est
  

Since  ≤ 1 and  ≥ 0, we see that this last inequality is implied by the condition   , which
is precisely the condition 


 


=  assumed in the theorem. Hence if




 


, CSD  will not find it

profitable to deviate from the strategy induced by (0
) on our subgame  . We have to assume similarly

that







such that CSD  will not find it profitable neither. Hence, under the assumptions of the

theorem, the strategy induced by (0
) is a Nash equilibrium of the subgame  .

This concludes the proof that () is a subgame-perfect Nash equilibrium of the whole game.¤

7.3 Complement about the building block of the model

The advantage of our choice for the underlying model is its simplicity and its generality. Basically, all it
says is that the quantity demanded of settlement services is a linear, decreasing function of its own price
and an increasing function in the prices of competitors. That demand of a given product decreases with
its price and increase with the prices of its available substitutes is a fairly general assumption. Moreover
linearity is often assumed in economics for simplicity reasons. Nevertheless the world is often not linear,
hence in the case of a derivable function linearity should better be regarded as a first approximation.
Consider again the building block for our model:

½
 =  −  + 
 =  −  + 

Writing  = − +  may strictly speaking allow for negative quantities: for too high prices

 compared to the competitor, namely for  
+


the quantity  becomes negative. Of course,

since it is not possible to produce negative quantities we should assume the firm would stop producing
(or the CSD stop providing settlement services). Hence the model should better be re-written as:

 = max(0  −  + )

Now, a firm which has stopped producing and continues fixing too high a price should not influence the
quantity sold by the other firm, that is, we do not want that  tends to infinity when  tends to infinity.
A possible way to bypass this pitfall is to re-interpret the price  in the above equation as the price at
which at least some transaction has been brought from . Hence, while it is more convenient to let the
price  fixed by CSD  be arbitrary, the price appearing in the formula determining the quantities will
only be precisely  if:

 
 + 


=: lim

For   lim it will just be lim, and similarly interchanging  and .

Hence the formula giving  becomes:

 = max(0  −  + min(  lim))
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Remark: For the same reasons as  
+


, we have

 
 + 



hence

 
1



( + 

 + 



)

This solves in

 
1


(1− 



)−1( +



) =: 

max

Hence formally we could (but do not need to) restrain the action space of the price-setting game of CSD  to
the segment [0 max]. Note we will still need to use the formula  = max(0 −+min(  lim))
since not all elements in [0 max] implies a positive quantity for . That is why there is no point in
reducing the action set.

7.4 Link with the Hoteling and Salop model

The Salop model with  firms can be seen as  Hoteling models assembled one after the other around a
circle. Clearly, a Salop model with only two firms separating the circle in two equal parts is equivalent
to the Hoteling model. Hence, the Salop model is an extension of the Hoteling model.
The main reason why many articles make use of the Salop model with three firms only is, besides the

complexity of computations involved for more firms, that with only three firms the Salop model allows
competition between any two firms to take place. Indeed, for more than three firms, it becomes difficult to
justify the use of such a spatial model, where two non-adjacent firms can only start competing when they
(jointly) wipe out the entire share of all the firms standing between them. Moreover, it is combinatorially
difficult to compute the equilibrium for more than three firms when, for example, location-specific network
effects are added, as is the case, for example, in Matutes and Padilla [20], and Cales et al [1].
Our model extends to more than two firms; for an arbitrary number of firms, write

 =  −  +
X

 6=



For example, for three firms we get:

 =  −  +  + 

 =  −  +  + 

 =  −  +  + 

Summing gives the aggregate demand, and as previously we see that it is inelastic when −+  +
 = 0 for all triplet (  ).

In Cales et al model [1], demand can be expressed in a similar way: in the incompatibility case, take
 = 1 and  = 1(2 ) for any  6= . Since − +  +  = 0, we find again that demand is
unrealistic.

Now, Cales model, in the other compatibility scenario, incorporates network effects on the clients’
utility. How can these effects be factored in our model?
An increase in utility (resulting from CSD  choice not yet modelled here), which increase the price a

consumer is willing to pay, can be captured by an increase in . Hence, the demand curve price is shifted
to the right: at any given quantity clients are willing to pay more than before, because of the increased
utility they derive from the services.
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Now, contrary to the Salop modelling used by Cales et al, there is no competitive effect in this utility
increase effect: at equilibrium we notice that not only  has increased, but also  (still  increases
415 less than ).
To get the same modelling we should assume  = +− −−+ + where  is

a constant chosen high enough to make the quantities positive and     are now devoted uniquely
to the increased utility of belonging to a bigger network (that can be specified using such or such model,
in particular we can give them the same form as in Cales et al article [1]).

7.5 Generalising to  CSDs

7.5.1 When CSDs are given the choice to reshape in the first period of the model only

Although throughout the article we favoured the view, when dealing with many CSDs, to focus on a given
CSD  and interpret the other CSD  as representing the overall market (minus CSD ), the model could
easily be extended to more than two firms, provided some symmetric assumptions are made in order to
keep the complexity of the computations down. Indeed, the general model for  CSD has its demand for
CSD  settlement services given by:

 =  −  +
X

 6=



We will in the whole section assume that the cross-elasticities are all equal:

 =  := 0

for any  6=  and  6= , as well as
 =  = 

for any  .
With this equation demands become:

 =  −  + 0
X

 6=



and profits can be written as before as

 = ( − e) − e

For a given vector  of length  always denote by − the vector of length  − 1 obtained from a
by deleting the th element of . For example if  is the vector of prices (1  ) then − the vector
(1  −1 +1 ). The best-response function for the price-setting stage is:

∗ (−) =
1

2
( + e + 0

X

 6=

)

Solving the system {∗ = ∗ (
∗
−),  ∈ {1  }}(for example, by summing all equations to find an

expression for
P

 
∗
 ) gives:

∗ =
(2 − (− 2)0)( + e) + 0

P
 6=( + e)

(2 + 0)(2 − (− 1)0)

We notice that at equilibrium ∗ − e = 1
 
∗
 . Hence ∗ = (∗ − e)2 − e, yielding

∗ = ( +
X

 6=

e −e)2 − 
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with

 =

√
{(2 − (− 2)0) + 0

P
 6= e}

(2 + 0)(2 − (− 1)0)

 =
0
√


(2 + 0)(2 − (− 1)0)

 =

√
{22 − (− 2)0 − (− 1)02}
(2 + 0)(2 − (− 1)0)

We thus deduce 
 :


 = e( + (

X

 6=

((1− ) + 2)) − ((1− ) + 2)))
2 − e(1− ) − ( )

with

e =
½

 if  = 1
1−
1− if 0 ≤   1

Let  = (1 ). Assuming ( ) = 
2
 , this expression can be derived with respect to 

to find the best-response function in terms of reshaping in a  period game or in an infinite game with
  1. Notice in passing we do not assume symmetric adaptation costs, since  is allowed to depend on
CSD .
In particular, we have an equivalent to Lemma 1:

Lemma 2 Assume   e22
 . Then if CSDs engage in price competition, the best-response function

∗ () is the constant function ∗ (−) = 1, which represents a complete reshaping decision from CSD 
whatever the degrees ,  6=  chosen by the other CSDs.

Proof: Because   e22
 the function 

 is first decreasing in , then increasing. Hence its
maximum is either reached at  = 0 or at  = 1. We prove that 


 (0 −)  

 (1 −) for any −.

 (0 −)  

 (1 −) is equivalent to

e( + (
X

 6=

 + 2) − ( + 2))
2 +  

e( + (
X

 6=

 + 2) − 2)
2

But since 2 + 2  (+ )2 for any   0, we have

e( + (
X

 6=

 + 2) − ( + 2))
2 + e22  e( + (

X

 6=

 + 2) − ( + 2) + )
2

and this inequality implies the above, since  
e22.¤

Assume now  
e22 for all . Then 

 reaches its maximum in some point ∗∗ (−) = ( +
(
P

 6=  + 2)− (+ 2)))−
P

 6=  . Solving for the (unrestricted) solution to the system
{∗∗ = ∗∗ (

∗∗
−),  ∈ {1  }} yields:

∗∗ =
((1− 1



P
 6= ) +

P
 6= 

1 + 
P

 6=

(1−)
(1−)

with  := ( + (
P

 6=  + 2) − ( + 2)).

This proves the following theorem (note we will not consider all the corner solutions as in the two-
CSDs case, but just assume the previously computed quantities belongs indeed to the action set of each
CSD:
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Theorem 8 Assume CSDs are engaging in price competition, and that   e22
 and ∗∗ ∈ [0 1] for

each CSD . Then the optimal degree of reshaping is given by ∗ = ∗∗ .

Simpler formula, assuming symmetric variable costs for CSDs. In order to provide a less
complex formula, we could have assumed perfect symmetry of the CSDs and markets. In particular,
CSDs are assumed to have the same costs . We can derive very easily a simpler expression for 

∗
 under

the assumptions of Theorem 8. Indeed by symmetry ∗∗ = ∗∗ for any CSD   hence,

∗∗ =  − 
X

 6=

∗∗

=  − (− 1)∗∗
Hence

∗∗ =


1 + (− 1)
( + ((− 1) −)( + 2)

One can check this is indeed, for  = 2, an equivalent formula to the one given by Theorem 1, assuming
 =: ,  := 0 for any  6= .

Remark: using this formula, by computing the derivative of ∗∗ with respect to the number  of
CSDs, one can show that provided the market are large enough (i.e  high enough), or that the costs
 + 2 are high enough, the degree of optimal reshaping is an increasing function of the number of
CSDs in the market. More precisely, in the symmetric case ∗∗ is a (strictly) increasing function of  if,
and only if,

( + 2)(1− )  

7.5.2 When CSDs are given the choice to reshape at any period: collusion theorem and
immediate reshaping

Using very similar arguments to the ones employed in the proofs of Theorems 2 and 3, one could prove:

Theorem 9 If   (
P

 6= ) for all  and the discount factor is high enough, a collusion-type theorem
holds: there exists a subgame perfect Nash equilibrium where CSDs indefinitely delay reshaping. The
strategy sustaining it is the same as in Theorem 2.

Theorem 10 If CSD ’s costs satisfy   (
P

 6= ), and the discount factor is high enough, and
assuming CSDs engage in price competition, then CSD  will always reshape in any subgame perfect Nash
equilibrium.

Note that, mathematically, it looks as if increased number of CSDs would tend to re-enforce the
possibility of tacit collusion not to reshape, as

P
 6=  grows with . Nevertheless the fact that the

strategy sustaining collusion in the proof of the theorem needs this assumption do not mean there is no
other strategies, with less stringent assumptions, that sustain collusion. Hence strictly speaking nothing
can be deduced about the likelihood of collusion from the assumption   (

P
 6= ). Moreover, the

strategy employed in the proof, that is, that each CSD assumes other CSDs’ strategy is to reshape
only in case some competitor has reshaped, become a less and less realistic assumption as the number
of competitors in the market grows. Divergence of views on the market as well as on other market
participants strategy is likely to drive the real process outside of the equilibrium path of strategy (),
resulting in CSDs reshaping.
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7.6 Robustness checks relatively to the shape of the adaptation-costs func-
tion

Most of the results of the paper are robust, at least qualitatively, to the shape of the adaptation-cost
function assumed. More precisely, all results from Section 3.1 onwards, because they apply to far-sighted
CSDs, do not depend on the shape of the adaptation cost function - as far as only finite values are allowed.
The results of Theorem 1 as well as of Lemma 1, depends quantitatively on the adaptation costs

function. Nevertheless we can still get similar qualitative results for general cost functions. For example,
there is a rough equivalent to Lemma 1, which shows that for high enough discount factors, or for gently
increasing adaptation cost functions, the optimal degree of reshaping is always a complete reshaping,
whatever the other CSD reshaping:

Proposition 4 Assume price competition, and that the adaptation cost function is derivable, and that its
derivative is bounded from above by  . Then there exists a discount factor  such that in any   , the
best-response function ∗ () is the constant function ∗ () = 1, which represents a complete reshaping
decision from CSD  whatever the degree  CSD  choose to reshape. More precisely, one can choose
 = 1− (2( + 2 − ( + 2))) .

Proof. Deriving 
 with respect to the degree of reshaping  gives:





= 2e( + ((1− ) + 2) − ((1− ) + 2))−




()

≥ 2e( + ((1− ) + 2) − ((1− ) + 2))−

which is always positive by our choice of . Hence, the maximum of 
 is attained for  = 1.

This is a very intuitive results, since it basically says that if CSDs are far-sighted enough, they will
want to reshape completely. In particular it contains the quadratic cost function studied in the article,
as well as any adaptation-cost function having a continuous first derivative.

Interestingly, choosing a linear adaptation cost function () = ( − ) +  (such that
(1) = ) gives a discrete, 0 or 1 best-response correspondence. Indeed, setting () = 2

2
 +

2{ + ((1− ) + 2) − ( + 2)} for convenience, one can show:

∗ () =

(
1 if −

 ≤ ()

0 if −

 ≥ ()

(note that for the  on the frontier, playing 0 or 1 are equivalent, and this is why we used the term
correspondence instead of function). Note in passing that the higher the initial reshaping cost (0),
the higher the reshaping, as the slope of the resulting adaptation cost function is lower.

This leads to the equilibra (∗  
∗
 ) indicated in the Table below:

−

 ≤ (1) (1) ≤ −

 ≤ (0) (0) ≤ −


−

 ≤ (1) (1 1) (0 1) (0 1)

(1) ≤ −

 ≤ (0) (1 0) (0 1) and (1 0) (0 1)

(0) ≤ −

 (1 0) (1 0) (0 0)

Interestingly, the condition (1) ≤ −

 ≤ (0) and (1) ≤ −

 ≤ (0) allows for two Nash
equilibria; since computation show that in this case the CSD having reshaped is better off than the other
(assuming the same initial parameters for both CSDs), we can distinguish a first mover advantage there.
Of course, starting with any parameter distribution and increasing the discount factor drives us towards
the first cell of the Table, where both completely reshape.

131



7.7 Nash equilibrium with collusion in prices

7.7.1 Introduction

In this paper we focused our attention on tacit collusion in the decision to reshape towards T2S. Most of
the literature since Friedman [12] has concentrated on tacit collusion in prices. This paper has instead
focused on the question of the consequences of price competition on the incentives for reshaping towards
T2S, including potential collusion therein. This focus can be justified because the European securities
settlement industry will benefit from increased competition by three complementary factors after the
introduction of T2S: first, the introduction of T2S will overcome a number of technical barriers to cross-
border settlement and provide a single platform on which CSDs will be able to compete; second, the CSD
regulation will ensure common legal standards for securities settlement in the European Union, including
free choice of CSDs for users and a ’passport’-concept for authorised CSDs to provide their services in
other EU member states; and third, a number of other initiatives contribute to further harmonisation of
technical, legal and regulatory aspects and the associated business processes27 .
Expectations of strong price competition after the introduction of T2S appear to be confirmed by a

recent announcement by Clearstream, with roughly 40% of the expected settlement volumes the biggest
single CSD group in T2S, that Clearstream would not add any margin on top of the direct T2S fee (2
in our model) after their migration to T2S (see Clearstream [4]). In order not to mix the incentives for the
investment / reshaping decision given price competition with the effects of increases in price competition,
we have assumed no changes in price competition over time. The degree of price competition is indirectly
captured in the cross-sensitivity parameter 12 and 21. We expect that explicitly modelling an increase
in competition over time would further increase the benefits of reshaping towards T2S, but leave the
explicit modelling for future research.
Another interesting theoretical question, closely linked to the literature following Friedman [12], is

to find other Nash-equilibria of the whole game for which collusion also appears at the price level.
Characterising all Nash equilibria seems an ambitious task, as many strategies become possible when the
assumption of price competition is removed. Hence, we will only consider a few such equilibria, and under
some simplifying assumptions. This nevertheless helps cast some light on the more complex real world
situation where CSDs can potentially collude both in the timing of the reshaping, in its degree, and in
the price levels fixed after reshaping. Price-collusion does not necessarily imply a greater potential for
collusion in delaying the decision to reshape. This is because by colluding on prices CSDs can pocket the
unit-cost-reduction stemming from reshaping rather than passing them to the market.

7.7.2 Simplifying assumptions

1) For simplicity, we will assume all CSDs’ parameters are symmetric Hence we will adopt the same
notations as in Annex 7.5 with

 =  =: 
0

for any  6=  and  6= , and
 =  =: 

for any  , but also:

 =  =: 

 =  =: 

for any  .

2) We will also restrict ourselves to symmetric strategies. This makes the resolution easier and can to
some extent be justified on the grounds of symmetric conditions, although of course symmetric parameters
do not dispel the possibility of the existence of non-symmetric NE.

27See, e.g., the third progress report of the T2S Harmonisation Steering Group, available at http://www.ecb.europa.eu/
paym/t2s/pdf/Third_T2S_Harmonisation_Progress_Report.pdf.
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7.7.3 Analytical resolution

By definition, in an explicit collusion situation, prices are set jointly so as to maximize the aggregate
profit. Hence in a symmetric setting we can expect each CSD’s individual profits explicitly colluding
to be usually higher than in a competitive equilibrium. Nevertheless, because of demand elasticity it
could happen that such profits are just equal to, and no greater than, the ones made in the competitive
equilibrium. Lemma 3 below gives the condition for which profits are strictly higher, as this will be needed
for the proof of Theorem 12.

Lemma 3 Assume the same current unit costs for both CSDs, that is, e = e =: e. Then the one-stage
profit in a (explicit) price collusion of the price-setting game is greater than the (unique) NE of the price
setting game if, and only if,

(
1

2( − 0)
3
2

−
√


2 + 0
)  (

1

2

1√
 − 0

+

√
(0 − 22 − 02)

42 − 02
)e ()

Proof : We assume the same current unit costs for both CSDs. This would be the consequence, for
example, of same individual unit-cost as implied by our symmetric assumption and of the same degree of
prior reshaping. Then e = 2 + (1− ) = 2 + (1− ) = e =: e, and profits in the price setting
stage obtained under competition can be expressed as:

∗ = (+e −e)2 = (+ ( −)e)2 =: ∗

with

 =

√


2 + 0

 =

3
2 0

(42 − 0)

 =

√
(22 − 02)

42 − 02

Let’s assume price-collusion in one of the stage price setting game (note this cannot result in a
NE of the one-period game). Because we are only looking at symmetric equilibria, this is tantamount to
looking at identical prices  =  =  that a monopoly consisting of both CSDs would set. Profits to
each of the CSD for setting a common price  is

 = (+ ( − 0))(− e)

The maximum is obtained for

 =
e
2
+



2( − 0)

This results in an individual profit of:

 =
1

4

1

 − 0
(



 − 0
− e)2

Now, profits can be higher in the price-collusion case if, and only if,

  ∗

This can be re-written as:

1

2

1√
 − 0

(


 − 0
− e)  + ( −)e

Replacing ,  and  by their value and re-arranging yields precisely the condition ().
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Remark 11 If we denote by ∗ the price corresponding to price competition, we can express the difference
of prices of ∗ and , as

− ∗ =
0

2(2 + 0)
e+ 0

2( − 0)(2 − 0)

Hence, the higher the unit-cost, the higher the potential price charged by the de facto monopoly compared to
the competitive equilibrium price.  is here the price which maximizes profits in a monopoly. Nevertheless
as in what follows the (tacit) collusion is obtained not by assuming a monopoly setting prices but by
indefinitely repeating the price-setting game and punishing the other CSD in case it deviates by playing
the competitive price, and any price between ∗ and  can be sustained in the equilibria we will define.

Theorem 12 Assume that e := 2 satisfies (). Let  be any price strictly higher than ∗ = 
2−0 +

2
2+0 but no greater than

2
2 + 

2(−0) . Then for discount factors high enough, there exists a subgame
perfect Nash equilibrium where CSDs collude in prices after reshaping.

Proof : Let  ∈] 
2−0 +

2
2+0 ;

2
2 + 

2(−0) ]. Consider the following strategy, that we denote by

(col): "If you have not reshaped yet, then fully reshape immediately. Then, if someone has not reshaped
yet then play ∗ in each of the subsequent price-setting stage. Otherwise play  as long as everyone plays
, and play ∗ indefinitely otherwise."
We will prove (col) is a subgame-perfect Nash equilibrium. We need first the following Lemma:

Lemma 4 For high enough discount factors, a given CSD will fully reshape at the beginning of the game
whether it plans to follow the strategy (col) or to defect. That is, it will always choose to reshape with a
degree of reshaping equal to 1 in the first period of the game.

Proof of Lemma: Let  be the degree of reshaping which maximizes total profits of CSD  in a game
where price-collusion is assumed to happen.


 = e(+ ((1− ) + 2)) − ((1− ) + 2)))

2

= e(+ ((1− )+ 2))( −))2

by symmetry. But

 − =

√


42 − 02
(22 − 02 − 0)

=

√


42 − 02
(2 − 02 + ( − 0))

with 2− 02 ≥ 0 and − 0 ≥ 0 since  ≥ 0 by assumption. Hence − ≥ 0 and 
 is maximum

for  = 1.
Now assume a given CSD wants to deviate from the strategy. Because the CSD non-deviating from

it will then switch to the non-cooperative mode (playing the competitive price equilibrium of each sub-
sequent price-setting game), the optimal degree of reshaping is precisely the one already derived in the

corpus of this paper. When  tends to 1, e = 1(1 − ) tends to +∞ and so   e22
 . Hence, by

Lemma 1:
∗ = 1

This completes the proof of Lemma 4.

We now resume the proof of Theorem 12. Let  be a subgame of the game. Let always be  the CSD
playing on the considered subgame  according to the strategy (0col) induced by (col) on .
If  is on the equilibrium path, it can only be of one of the following type:
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- type A:  contains the first stage idem est  is the whole game. Then, by Lemma 4, playing
 = 1 is optimal for CSD . After the reshaping phase, because CSD  is following (col), we are left
with a simple infinitely repeated game where one of the player (CSD ) is playing a simple grim trigger
strategy to promote playing   ∗. Because condition () ensures playing  indeed results in strictly
higher payoffs than playing the competitive equilibrium price ∗ for each of the stage game, the trigger
strategy is a NE on this subgame for high-discount factors. Hence the best-response answer, for high
enough discount factors, is for CSD  to play  too, and punish  if it deviates. Overall, CSD  is thus
also conforming with (col) on .
- type B:  does not contain the first stage. Because  lies on the equilibrium path by assumption

the reshaping for both CSDs has already occurred in the first stage of the game. Hence  again only
consists of the price-setting game being repeated an infinite number of times. Condition () coupled
with high enough discount factors imply the simple grim trigger strategy induced by the strategy (col)
on the subgame  is a Nash equilibrium.
If  is off the equilibrium path, it can be of the following type:
- type C: the history leading to  is one where the CSD  has not reshaped yet then since we assume

 will follow the strategy (0col) induced by (col) on , CSD  will immediately reshape with  = 1.
Discarding the history leading to  gives a game identical to the whole game, that is, to the type A
subgame. The same reasoning applies and CSD ’s best-response is again to conform with (col).
- type D: the history leading to  is one where the CSD  has reshaped. Then either  has reshaped

at the same point in time and played  from that point in time till now, and then ’s strategy is a grim-
trigger strategy for which the strategy induced by (col) on  is again ’s, or not. If  has played another
move than the one advocated by (col) during the history leading to  then  is playing the competitive
price equilibrium ∗ of the price-setting stage indefinitely. Clearly, ’s best-response is ∗, since ∗ is the
unique Nash equilibrium of the stage game. This achieves the proof of subgame perfection.

Remark 13 The following strategy also sustains the price-collusion Nash equilibrium, and leads to the
same equilibrium path: "Reshape in the first period of the game completely. If everyone has reshaped in the
first period and played until now  in the price-setting game then play . Otherwise play ∗." The proof
is somehow simpler than for the strategy (col) we chose since it is clear Type C and D collapse together.
Nevertheless the strategy (col) is more adapted to allow a delay in the decision to reshape. Also, as soon as
 is chosen close to the optimal ∗ = 

2+


2(−0) where ∗ is the price-setting stage game Nash equilibrium
for current costs e, there is little incentive for CSDs to delay the reshaping: for high discount rates a
Pareto-dominating subgame-perfect Nash equilibrium is indeed to reshape immediately and completely,
while price-colluding on each subsequent price-setting stage by playing exactly (e) = 

2 +


2(−0) for

e = 2 + . Thus, the unit-cost reductions obtained from reshaping are partly absorbed by the CSDs
themselves and not passed to the market. Because e decrease with reshaping, the market still has a
decreased colluding price compared to a (hypothetical, not modelled here) situation of prior price-collusion
with higher costs. If the prior situation was closer to ∗(), the prices may increase as a result of the new
price-collusion.

7.8 Discussion on the effect of greater competition on the relevance tacit
collusion theorem

The model captures competition effects through the cross-elasticities  , which reflect a (fixed) substi-
tution effect assumed between the two different markets. Indeed, as noticed earlier, for    , an
increase of one unit of the price  leads to a fall of  of volume of CSD , but to an increase of volume
of  for CSD . In the extreme case where  =  , an increase of one unit of the price  leads to no
fall in the aggregate volume of settlements, which can be interpreted as "the whole demand for settlement
services having left market  due to the price increase moves to market ". Hence, the closer  is to  ,
the greater the substitution effect. Now, it is interesting to wonder if a greater competition (substitution)
effect invalidates the tacit collusion theorem. That is, does greater competition decrease the chances of
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tacit collusion to avoid reshaping? Interestingly, the answer is that it does quite the opposite: the distri-
bution of individual CSDs’ costs satisfying the condition of the tacit collusion theorem 2 becomes larger
with greater competition. To show this, let us for convenience assume

 =  =: 
0

for any  6=  and  6= , and
 =  =: 

for any  . The condition under which there is a subgame perfect Nash equilibrium in which CSDs
indefinitely delay the moment of their reshaping, i.e. tacitly collude not to reshape, is:

1







 

with

 =  =
0

22 − 02

Hence the condition becomes, if we let  = 0



2


−  




 (
2


− )−1

Now as explained previously, greater competition is translated by the model parameter 0 coming closer

to . That is, by an increase by some factor   1 of the ratio  = 0

 , which becomes    (with,

of course,   1). The range of admissible ratios 

actually becomes larger when  increases to ,

because 2
 −  2

 −, as well as ( 2 −)−1  ( 2 −)−1. This is because 2
 −  2

 − is equivalent
to 2( 1−

 )  2(− 1) which is trivially true for   1 since 2( 1−
 )  0  2(− 1). This concludes the

proof.
Therefore, the set of parameters for which tacit collusion is sustainable in a high competition /

substitution environment is larger than in a low competition / substitution environment.

7.9 Graphs from simulations of Section 2.4.4
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Figure 1: Two-dimensional graphs of the optimal reshaping function of CSD 1
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Figure 2: Three-dimensional graphs of the optimal reshaping function of CSD 1
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Figure 3: Histogram of the optimal reshaping function of CSD 1
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Figure 4: Average value (top line of each graph) and variance (bottom line of each graph) of the degree
of reshaping (10000 simulations for each point)
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Figure 5: Average value (top line of each graph) and variance (bottom line of each graph) of the degree
of reshaping (10000 simulations for each point)
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Article 4: Endogenizing the network effect: how Monte-Carlo simulations and Graph
Theory could benefit economic modelling1

1 Introduction

A general aspect of many market infrastructures or organisations is their inherent network effects: for
example, additional market participants in a trading or settlement system can increase the benefit of
participation for all other market participants. More participants implies each agent can do business
with more counterparties, hence that liquidity increases and capital costs tend to decrease (see e.g.
[14], chapter 5). The same can be said for telecommunication networks, which prompted in the 90s
some industrial organisation studies to introduce network effects in their modelling through the use of a
network utility function of a specific form, very often a simple linear function of the aggregate size of the
network. In addition to these pure network effects, many industries exhibit significant economies of scale
and scope (see [4] for a quantitative estimation of their relevance in the post-trading industry). These
effects lead to decreasing average transaction costs as the number of users of a market infrastructure
increases. They are also relevant for decisions to join existing infrastructures of previously fragmented
markets, or to create new ones.
The reader can refer to Economides [15] for a description of general network effects in an industrial or-

ganisation setting, as well as to Economides and Salop [16], and to Park and Ahan [45] for interconnection
pricing and joint ownership in network industries. An informal introductory discussion of these network
effects in the setting of the post-trade industry, with some comparisons with other network industries,
can also be found in Knieps [33].

The first main contribution of the article is to allow the network effect of a given industry to be
endogenous to the model by providing explicit micro-fundation for it (Section 2). So far in industrial
organisation theory the network effects on agents’ utility have been assumed rather than derived from
a model. We propose a completely different approach, based on a simple modelling of the networks
involved, which allows to derive the network effects in an endogenous manner instead of assuming an
ex-ante form of the its utility. Hence, instead of assuming an ex-ante special form for the contribution
of the network effect in our agents’ utility, we derive this additional utility is from the basic assumptions
of the model (different costs, profit margins, pre-existing network and overall pattern of trade).

The second main contribution of this paper is to build on the results from Section 2 in order to
study agents’ decision to join or not a complete network, as opposed to staying in a pre-existing network
(Section 3). The section thus illustrates how utility functions derived from network models can be used
to reflect on the plausible migrations of agents which lies on different networks. A quantification of agents
incentives to join the new network is obtained as a function of the involved networks operational costs,
the individual agents’ costs per transaction, the agents’ adaptation costs, as well as the initial belief
held by agents about the number of other agents having already joined the network. In particular,
the paper illustrates the possible synchronisation problems faced by agents and the potential need for
synchronisation from a given subset of agents in order to achieve a more profitable situation for all agents
(Section 3). Policy implications are that more transparency concerning the agents’ decision to join the
network, as well as more detailed feasibility studies concerning the costs of adapting to the network, may
allow to reach more efficient Nash equilibria.

The third main contribution of this paper relates to the determination of stable networks and equilibria
in a game of network formation derived from our basic model (Section 4.2). In that sense this paper is

1A version of this paper has been submitted in October 2014 to the journal Managerial and Decision Economics under
the title "Network effects and modelling agents’ decision to join a network".
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linked to the so-called emerging "network economics" literature, which has been successfully applied over
the past decade to describe economic phenomenon as diverse as the social transmission of job information
(Calvo-Armengol and Jackson [3]), free-trade agreements (Goyal and Joshi [23]), and co-authorship links
(Jackson and Wolinsky [28]). Moreover, this stream of literature contains many articles that are basic
models described in a generic setting and could thus potentially be applied to a variety of situations (see
Bala and Goyal [1], Belleflamme and Bloch [2], Dutta and al [10], Goyal and Vega-Redondo [24], Jackson
[26], [27]). For each trade that can be realised a chain of intermediaries of minimum costs is chosen, and the
profits derived from realising the trade along that chain of intermediaries are equally shared by the various
market participants involved in the chain. The rules of the new game, which extend the network utility
pay-off derived in Section 2, have not yet been studied in the network economics literature. Simple as they
seem, they introduce profound topological strategic considerations in the decision of market participants
concerning the creation of links with one another. For example, creating a link towards a player which
provides access to many other players not directly accessed would generally be attractive because of
the plausible intermediation fees profits. Section 4.2 sheds light on such strategic interactions, and the
structures that emerge in equilibrium, with a view to understand better the strategic considerations of
these complex networks and their implication for the efficiency of the resulting global network structure.

2 Microfundations of network utility

2.1 Graph-theoretic models for networks

2.1.1 Definitions

We use a graph theoretic framework in which agents are represented by the nodes of some (possibly
evoluting) network . We denote by  () the nodes of a given network  at time . The cardinality
of a network is by definition the cardinality of its set of nodes, that we often denote it by . An edge,
or link, is any (ordered) pair of nodes (), with  and  in  (). It is denoted . Note that the
order is important, because  is different from  if  and  are not the same node.
At any given period , any edge  is either in the network, that is, belongs to the set of edges

() of the network , and in this case we note  ∈ (), or not in the network, and we note
 ∈ (). Of course, an edge  from the node  to the node  represents some (unidirectional)
"link" the agent  has established with agent . For example, if one thinks of the nodes as the Central
Securities Depositories (CSD) of the post-trading industry, an edge between  and  could mean that
 is an investor agent in  idem est holds an account with  that allows it to settle transactions of
securities in the domestic market of . Note the relation does not need to be symmetric, that is,  can
have an account with  (and thus be able to settle trades for its clients in the domestic market of )
without the converse being true ( does not need to have an account with ). This is the reason why
the pairs are ordered.
As an example, consider the hypothetical network on Figure 1. Note that while some pairs of nodes

are linked in both directions ( and ), other links are just one directional. Loops, that is, edges
which come from and arrive at the same node ( in Figure 1), can symbolise
the fact that the agents are indeed able to carry out domestic transactions. For simplicity we will often
not represent loops on figures.

Three networks have a particular significance when studying trade or settlement networks: the empty
network, which is a network with no link, and generally reflects too high costs for establishing a link
compared to the expected profits derived from it, the complete network, which contains all possible links
and indicate a strong desire of disintermediation, and the complete star network, where one node, called
the center of the star, is linked in both directions to all other nodes, which are called the leaves of the
star. Hence any trade in a complete star network involves the center of the star. The star network has
also been called the "hub and spoke" model in the context of the securities settlement industry, see for
example [35]. Figure 2 represents these three particular types of networks.

Edges can either be in the network before the start of the simulation, that is, before period 1, or be
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Figure 1: A network with six nodes and 14 edges.

Figure 2: A complete star with 6 leaves, the empty network on 5 nodes and the complete network on 4
nodes.

built after, if the agents expect it to be profitable. At each period  node  can build any edge starting
at  not already in the network, at a cost of 

.
When the link  is in the network at time 0, that is, was either in the original network or has been

created by player  previously, it can be used at any time  ≥ 0 to realise the latent profit  with a
probability  

 . Using the pre-existing link  at time  a incurs a cost of  . We call 

 −  the

net profit. For player  to build the link  at time  incurs a fixed, one-off cost of 
 . If we denote by


 the expectation of net profits from realising the link  at time  then a rational player  should
create the link  at time  if, and only if, 

  
 .

We assume the agents are rational investors with perfect information, thus being perfectly able to
predict how much gains can be expected from establishing a new link to another agent. We also assume
their time frame  is finite and fixed, although we can easily relax this assumption to allow for a moving
window of  periods ( represents thus the time-horizon of the agents). Coefficient of actualisation of
future gains, that is, discount rates, can be included in the model by simply taking the discounted value
for the future gains (resp. costs)  (resp. 


).

We present two closely related models which correspond to two different situations, more precisely,
are the agents examining only the future expected values of profits they could earn by building some
edges at each period or can they wait to know that at least one trade can be carried out through the edge
they may build. In both models, running and operating the network incurs fixed costs, that we denote
by . Note that by fixed costs we actually mean any deterministic function, which does not depend
on the probabilities involved. For example  could be taken to be any function of time, but not a
function of the number of newly built edges (which is a random variable).

2.2 Input (for both models)

The input for both models consists of
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- a pre-existing network 0, that is, a set of  nodes (representing agents) of the network 0, denoted
by  (0), and the set of edges (0) already in the network at the beginning of period 1,
- the number of periods of the simulation, i.e. the time-horizon of the model  ,
- for each period  = 1 , some probability distribution on the edges  . It means for any  = 1

we have both
P

  
 = 1 and  

 ≥ 0 for all  ∈  ().
- for each directed edge , and each period  = 1 :
(i) the cost  of using the pre-existing edge  at time ,
(ii) the cost 

 of creating edge  at time ,
(iii) the gain  of realising the transaction that uses the edge  at time .

Note that each of the three previous quantities could be a random variable, as soon as we know how to
simulate them (for the simulation part) and to express their mean (for the analytical part). For example
in the case where the expected profit from the transaction is not a fixed value but a random one, replace
 by the realised value (), where  belongs to the universe Ω, in the algorithms below.

2.2.1 First model: optimisation algorithm when the idea of a trade is known after the
possibility of building an edge

The first model can be described as follows: at the beginning of each period  each link (edge) not already
formed is considered by the agent, which decides to establish a link (build an edge) if, and only if, the
expected additional profits derived from this link exceed the costs of establishing it, idem est if, and only
if, 

  
. Then an idea of trade (arising from one of the agent’s client) arises, involving a given

edge . If this edge is not in the network at that point, there is no way this trade could be realised.
If the edge  is in the network (either because it was there right from the beginning or because it was
constructed afterwards), then the initiating agent ponders if the costs of using that pre-established link
exceeds the benefits it derives from the trade. If it does, the idea of trade is realised, the aggregate gains
derived from this trade being  − , otherwise it isn’t.

Algorithm:
For each period  from 1 to  do:

1) For each edge  not already build, look if 
 ≥ 

.
If 

 ≥ 
 then

Pay 
 to build the edge

Else
do nothing.

2) Draw an idea of a trade according to the probability distribution  . We denote the idea of the
trade arising at period  by .

3) Look if edge  is in the network.
If  is in the network then
Look if    .
If    then
Carry out (realise) the transaction and earn a profit of   

Else
do nothing.

Else
do nothing.
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2.2.2 Second model: optimisation algorithm when the next idea of a trade is known before
the possibility of building an edge

The second model differs in that not all non-existing links are considered at each period. On the contrary,
the idea of a trade comes first, and there may or may not be a link to allow it to be realised. In case
there is no link the agent can build the link if the expected additional profits derived from it (knowing
a trade can immediately be realised using this link) exceeds the costs. Whenever a link corresponding
to the idea of a trade is in place, the costs associated with using this link are compared to the profits
derived from using it and the transaction is made if, and only if, the profits are larger.

Algorithm:

For each period  from 1 to  do:

1) Draw an idea of a trade according to the probability distribution  . We denote the idea of the
trade arising at period  by .

2) If the edge  is already in the network then go to step 4), otherwise continue to step 3).

3) Look if 
 ≥ 

 where 

 is the expected gains from future trades involving the edge , including

the one that would like to be realised at period .
If 

 ≥ 
 then

Pay 
 to build the edge

Else
do nothing.

4) Look if    .
If    then
Carry out (realise) the transaction and earn a profit of  − 

Else
do nothing.

Remark: for all , , 
 depends on the time-horizon  .

2.2.3 A simple introductory example of a non-evoluting network

Simplifying assumptions for an analytical resolution Of course, each of the two general models
for an evoluting network contains the simpler case of a non-evoluting network: just set all the costs 



for creating new edges higher than the possible profits derived from any single edge, and no edge will
ever be built. Note that in such case the two distinct algorithms do exactly the same thing, collapsing in
the single model detailed here.

To get a nice closed-form formula for the expected profits of switching to the network we make a
number of simplifying assumptions, but we still want to distinguish between domestic trades (those
involving edges of type , the loops), from cross-border trades (those involving edges  with  6= ).

Let  be the probability for an idea of a trade to be domestic. A natural proxy for  would thus be
the ratio of domestic trades over the total number of trades (cross-border and domestic).
Hence, by definition of :

 =




 =
1− 

(− 1)
Assume also for simplicity that:

∀ ∈  () :  = 

∀ ∈  ()   6=   6=  :  = 
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That is, all domestic trades are equiprobable and this is also the case for all cross-border trades. We
will thus often write  for the probability of a (any) domestic trade and  for the probability of a
(any) cross-border trade without stating precisely which are the agents involved. Similarly we suppose
costs and gains derived from a transaction to be the same for each type of trades, and we denote by 
and  the costs and gains from a domestic trade and by  and  the costs and gains from
a cross-border trade. We also suppose    and   . Concerning the network  we
suppose that all loops, that is, edges of type , are already there (hence reflecting the fact that every
agent is able to carry-out domestic trades), and that there are  other pre-existing edges which are not
loops (of type  with  6= ).

In what follows we derive the utility of evolving networks from the central planner perspective, that
is, the aggregate utility. We then apply the formula both to the general case of a evoluting network and
to the specific case of a network which is complete, that is contains all the edges, and will be the new
network proposed by the central planner to the players. Subtracting the quantities gives the marginal
utility of the new proposed network compared to the existing (and evolving) one. This is thus a crucial
input to understanding the utility of the new proposed network. We then take the point of view of an
individual agent and study the decision of the agents to join or not the new proposed network.

Analytical resolution: a closed-form expression of the network benefits Some notations
For any real number , we denote by bc the floor of , that is, the largest integer smaller or equal to

.
We denote by Ω the universe and by  ∈ Ω an element of the universe.
For two sets A and B we write A ⊆ B if A is included in B, that is, if all elements of the set A also

belong to B, and in that case we denote by A the complement of A in B, that is, the set of all elements
of B which are not in A. We denote by 1A the indicator function of some a given set A, ie:

1A() =

½
1 if  ∈ A
0 otherwise

Analysis
Profits is a random variable that can be written:

 =
X

=1

( − )1(∈()) − 

Remark: if we chose to discount future profits and costs by some discount factor , it’s enough to
simply replace all the  by  and all the 


 by  in the above formula and the results that follow.

Now taking expectation on both sides of the previous equation yields and assuming for simplicity
gains and costs do not vary over time, and write  := , etc., we get (see Annex 6):

() = ( − ) +(1− )


(− 1)( − )− 

This general formula of course applies to the particular case of the complete network proposed by the
manager or central planner by simply setting  = (− 1). In that case applying the previous formula,
and indexing the different parameters in a straightforward way, we get:

( with the network) = ( − 
 ) +(1− )( − 

)− 


where the index  stands for "complete", meanning the parameters are those of the complete
network being introduced by the manager or central planner. By simply subtracting the two equations
we thus obtain an expression for the expected marginal utility of replacing the evolving network by the
new complete network:

( − 
 ) +(1− )

½
( − 

)−


(− 1)( − )

¾
+  − 



We discuss its interpretation in the next section.
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Discussion on the benefit split-up of switching to a new complete network For discussing
the merits or drawbacks of the network it is better to rewrite the previous expression as

( − 
 ) +(1− )

½
(1− 

(− 1)) +


(− 1) − 


¾
+  − 



The first term represents the benefits from domestic trades. These potential benefits rely solely on costs:
if the costs of the complete network for domestic trades are lower than the one of the existing network,
the first term will contribute positively to the aggregate marginal utility. This particular fact can point
towards the need for the agents to adapt to the network (for example, to make their IT infrastructure
compatible to the one operating the network in terms of message formats, etc.), such that 

 , which
is the sum of the internal costs incurred to the agent in the complete network , will drop below , the
costs for domestic trades in the previous network.
In the post-trading industry for example, domestic trades are in general rather efficient in terms of

costs, only those agents which reshape their IT structure to fully adapt to the new network will reap
the potential benefits from domestic trades indicated by the first term. Alternatively, agents having an
inefficient domestic infrastructure for settling their domestic trades will also benefit from this term.

The second term is the most complex and reflects the benefits derived from cross-border trades. The
term 

(−1) reflects the density of the pre-existing network of bilateral links. The more dense it is (that
is, the higher the number of links ), the less benefits are to be expected from latent profits now being
able to be realised in the network. At the extreme case, the agents had already created all the links,
idem est  = (− 1), and the benefits are only due to costs-reduction, since we end up with the term
 − 

. For sparser and more incomplete pre-existing networks, other benefits stem from new
opportunities to access other nodes. The term 

(−1) − 
, if positive, reflects the decrease in

aggregate costs for cross-border trade. Note that this term could be negative, that is, the aggregate costs
of cross-border trade could actually increase with the adoption of the network. That is, the second term
is always positive, indicating the benefits of the network for cross-border trade, benefits derived both
from an increase of the cross-border trade being able to be realised and a reduction in unit costs for
cross-border trade offered by the platform.

The last term is clearly expected to be negative, since in 
 have to be included all the costs for the

whole set of agents to adapt to the network. Nevertheless, these costs are one-off costs, hence temporary
in nature. In that case 

 would be best modelled by a decreasing function of time, 

 = ().

The speed with which () decreases, and the long-run costs it converges to, is ultimately in the hands
of the agents themselves. Of course, there are some incompressible costs, such that the operational costs
charged by the complete network platform itself once it has amortized its initial investments. Nonetheless,
by outsourcing their trade service to the operators of the complete network, economies of scale can be
expected, which would make the limit of () lower than . But this is conditional to the agent fully
adapting to the complete network architecture and hence not duplicating the operational and back-office
costs. In this article we do not model the relatively important questions or whether or not these one-off
adaptation costs could be passed on to the agent final clients or not. For such a modelling in the context
of the post-trading industry, the interested reader can refer to [40].

The more general case of evolving networks,albeit with homogeneity assumptions concerning the
parameters and the probability distribution for realisation of profits, are treated in Annex 6.2 which
provides similar results with similar interpretations.

Remark: There are several ways in which the model could be extended:
1) An expected effect of the introduction of the new complete network could be an increase of com-

petition among agents, whereas the competition effect is not modelled at all here: we have not looked
at individual agents’ profits but only at their aggregate profits, answering the question: does it benefit
the agent community as a whole to join the network? Nevertheless one can easily compute individual
agent profits in the model, and see which one benefited the most, depending on its initial position in the
network. Still, another scheme would need to be added to factor in competition among agents. We could
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for example introduce competition by making at each steps different types of complementary signals on
the nodes indicating possible trades, and the agents which have a signal complementary to a same other
agent signal compete for the executing this trade (choose the winner by using a probability rule or by
executing the least costly trade, or the trade with higher pay-off, or by choosing the ones that can lower
their fees    the most).

2) Another idea is to add a constraint in terms of the budget of the agents, reflecting that due to
limited funding possibilities, a given agent might not be able to establish a link even though it would like
to do so. This would introduce additional benefits derived from the network in the form of pooling of
resources for the agent community.

3) For each agent there might be a majority of domestic versus cross-border trades (or alternatively
the nodes could represent the clients of the agents and the costs and gains the clients’ costs and gains).
Introducing these two (or more) "types" of nodes would allow to access the impact of the post-complete
phase in terms of benefits for the internationally-oriented agent as compared to the more domestic ones.

4) We have been working under the most favourable assumptions for the profit-maximisation of agents,
that is, perfect information and rational agents. One may want to investigate further the effect of changing
to the network assuming bounded rationality or imperfect information for the agents.

3 To join or not to join? Giving the agents the choice

We assumed a pre-existing evolving network and a new complete network proposed by the central planner
or its manager and derived its marginal utility when all the agents join the network in the post-complete
phase. Since participation in a network is usually voluntary, some agents may choose to stay outside the
complete network. That is, they prefer to continue to benefit solely from the previously established links
and those they can possibly build themselves afterwards, but will not contact any other agent through
the newly available complete network. Using the results and modelling of the previous sections we will
now show that it is easy to model a post-complete network phase in which some, but not all, of agents
have joined the complete network. We then look at the benefits of the new network conditionally to
the number of agents joining the network. Here too, the network effect is endogenous, contrary to most
network models found in the literature where one has to assert a special form for the additional utility
derived from the network (generally a proportional factor to the size of the network the agent can reach).
With these benefits of a non-complete network derived, we will endogenize agent’s decision to join or
not the network. Agents decision will depend of the efficiency of both current and new network, as well
as their believes about other agents’ intentions. We will characterise the set of all Nash-equilibria as a
function of our model parameters.

3.1 Assumptions

In any of the two previous models it is straightforward to derive each agent individual profits associated
to a given network. If agents are rational investors with perfect foresight, their decision to join or not
should be made by computing their expected marginal utility of joining the new network.

We make two important assumptions in what follows: first, that the agents that have joined the
complete network do not price-discriminate towards those who have not, and thus continue to trade
with them as before, and vice-versa. Hence, using the old links between a agent inside the network and
another outside the network is still possible and comes with the same costs as before, as it uses the old,
pre-existing network.
We also make two (unnecessary) assumptions in order to keep things as simple as possible: the first

assumption is that the fixed operational costs of agents that have joined are higher than before because
they still fully bear the fixed costs of operating the old network in order to be able to carry trade with those
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agents that have chosen to stay outside the network. More precisely we assume the fixed costs of those
agents having joined the network can be written as the sum of the fixed costs of the complete network
and of the old pre-complete network. The effect of this assumption is certainly an overstatement of the
actual costs of the network: with less agents operating in the old network, there is certainly some room
for the reduction of the operational costs of the agents having joined the network. Our assumptions, only
made for convenience, amounts to assuming that the agents having joined basically bear the full costs
of operating both the old network (now containing less nodes) and the new complete network (which
has for size the number of nodes having joined). Relaxing this assumption, assuming, for example, a
strict decrease in the operational costs of operating the old network for those agents that have joined
the network, can easily be done, but then a precise form of the parameter 

 has to be assumed to

analytically solve the model.2

The second simplifying assumption is that we will not distinguish between domestic and cross-border
trade. Hence  = 1

2 is the probability of an idea of a trade appearing on any given edge , for
 in  () (hence  may be a loop), and the costs of using a loop is the same as of using an edge
which is not a loop.
Concerning the other parameters , 


, and 

 of the model we assume them constant other
time and homogenous across the edges, in line with Sections 6.2.2 and 6.2.3.

3.2 Definition of the game

Now select (once for all) one of model 1 or 2, and consider the following simple game:

1) Each agent decides whether to join the complete network or not.

2) Each agent receives the associated payoff (the individual payoff as implied by the previous section
concerning evoluting networks).

Although in the second step randomness is involved, this still results only in a simple static game of
complete and perfect information, since the rational, non risk-adverse, and profit-maximizing agents will
just act in step 1 such as to maximize their expected payoff in stage 2, and these expected payoffs are
perfectly known and computable.

We will select, for example, the first model to illustrate. A similar analysis could of course be conducted
by selecting the second model.

3.3 Analytical resolution

The expected gains from a given agent A in a general evoluting network  with no edge at period  = 1
is the sum of the expected gains from trades carried out through built edges of type  with  ∈  (),
minus fixed operational costs:

1
 =

X

∈ ()
(1

()− )1(1
()≥) − 



with
1
() := ( − )

By the simplifying assumptions of the model we get a general expression for the expected profits of
an individual agent  within an evoluting network with n nodes:


 () := 1

 = (1
()− )1(1

()≥) − 


2Equation () (see later) may then be a polynomial of degree higher than 2, depending on the form of dependency of

 on 0 assumed.
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To derive a similar expression for the complete network it is enough to use the previous formula with
 = 0 for all edge , as all edges between all vertices are provided by the complete network at no
cost:


 () = 1

(

 )− 



Moreover, the fixed costs of operating the complete network as a whole over the amortization period can
be decomposed into two components: the portion of the fixed, incompressible, operational costs of the
complete network platform that are passed on to the agents joining the new network (recovery fees) and,
possibly, the margins set by the central planner or the manager of the new complete network; the sum of
these two costs we denot by  and we assume equally shared by the  network participants joining the
new network. Hence each of the  participants joining bears a cost of . Moreover, each agent  bears

fully its own individual adaptation costs . Hence 
 = +  and we have:


 () = 1

(

 )− − 

Note in passing that, if we want to make the link with the aggregate constant 
 of the previous

sections, we would write:


 =

X

∈ ()

 = +

X

∈ ()


The expected gains of joining the network for an individual agent holding the belief that 0 − 1 agents
other than himself will join the network is simply the sum of:

1) the gains  
 (0) from settling transactions with the 0 agents having joined the network,

including itself,
2) the gains 

 (− 0) from settling transactions with the − 0 agents still out of it.

Figure 3 illustrates the superposition of the two networks used to describe the post-complete hybrid
environment: the gains of agent  having joined the complete network can be split into the gains from
trade with other agents which also joined the new complete network (through the links inside the circle),

which amount to  
 (0), and the gains with agents staying outside the network, using the old

network (through the links that cross the circle). Now notice that because of the assumption of spatial
homogeneity across parameters, agent  profits arising from trades with agents outside the network are
the same as the profits of any agent  outside the network that arise from trade with agents outside
the network other than  itself, plus the profits arising from idea of trades of type (). Again, by
homogeneity of parameters the profits arising from idea of trade of type () are the same as those
arising from idea of trade (), hence 

 (−0) (which is also 
 (−0)) is indeed the profits of

agent  arising from settling transactions with the − 0 agents outside the network.

A

B

Figure 3:

These gains have to be compared with the expected gains from not joining the new complete network,
also holding the same belief that 0 − 1 agents will join the network. This quantity is simply 

 ()
and does not depend on 0.
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Thus a given agent  holding expectations that 0 − 1 agent different from himself will join the
network would join himself the network if, and only if,


 (0) +

 (− 0)  
 ()

Note this also uses the previously stated assumption that the fixed operational costs of agents joining the
network will be the sum of 

 and of 

 (left hand-side of the inequality). This is because 



is accounted for in  
 (0) while 

 is accounted for in 
 (0). The previous inequality

can be re-written as:

 (0)−

 (0)− 
  0

idem est:
0{

1
(


 )− (1

()− )1(1
()≥)}− 0 −   0

Setting  := 1
(


 )− (1

()− )1(1
()≥) we get

0 − 0 −   0 ()

Let () :=  −  − . Then  0() :=  + 2 is always non-negative so  is increasing in . The
positive real number 

 such that (

 ) = 0 is


 =

 +
p
()2 + 4

2

Hence if 0 ≥ 
 then it is worth joining the complete network for agent . Since every agent  can

carry out this computation of 
 , which is independent from 0, and assume the others do the same, at

equilibrium 0 is necessarily the number of agents  such that 
 ≤ 0.

Note that 
 is increasing both with  and with : the higher the individual agent adaptation costs

or the complete network platform costs are, the more volume 
 is required to make the complete network

service competitive enough for agent  to decide to join. Note that  can be re-written as:

 := (( − 
 ) + )1(1

()≥) +( − 
 )1(1

())

Hence  is nothing else than an efficiency indicator of the network. Indeed, the first term quantifies
the gains from the reduction of costs for those trades that were already realised in the old network,
and can be further decomposed into two components: gains realised by reducing unit-costs for trade,
( − 

 ), and gains from not having to build any further link for settling new transactions,
. The second term represents the gains from the trade that were missed opportunities before the
network due to the absence of links. Unsurprisingly, the first derivative of 

 with respect to  is negative,
that is, the minimal number of agents joining the network required to make the platform attractive drops
as the efficiency indicator  increases.

Remark: it can be shown that the case where the manager or central planner chooses not to pass
on its costs  explicitely but includes them in the costs charged for using edges to realise latent profit is
similar (Annex 6.3).

The theorem below characterises all the Nash equilibria of the game:

Theorem 1 Nash equilibria are precisely the strategies for which, if 0 denotes the number of participants
joining the new complete network, then 0 = #{ ∈  () 

 ≤ 0} and each participant  joins the
new complete network if, and only if, 

 ≤ 0.

Proof. Let a given strategy be a Nash equilibrium. Assume an agent  has chosen to join the network
if and that 

  0. Then by the above A would be better off not joining the network, a contradiction
with the definition of a Nash equilibrium. Conversely, the same reasoning shows that these conditions
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are sufficient for the profile to be a Nash equilibrium: assume the number of agents having joined the
network is 0 and that those agents having joined are precisely those agents  such that 

 ≤ 0. Then
there is no incentive for any agent to deviate unilaterally from playing its current strategy.

There can clearly be different Nash equilibria in our model. For example, since 
  0 by definition,

the situation in which no agent join the network is always an equilibrium, since for 0 = 0 we do have
that the set { ∈  () 

 ≤ 0} is empty. At the other extreme, if we assume max∈ ()(
 ) ≤ 0,

the situation where everyone join the network is also a Nash equilibrium. In-between there may be
a large number of Nash equilibria, or none, depending on the position of the subset of real numbers
{

   ∈  ()} with respect to the set of natural numbers.3

3.4 A simple example

Figure 4 illustrates the three different Nash equilibria for a game with three agents , , and , and

  1, 2  

 ≤ 
  3: the values of 0 corresponding to each of these equilibria are circled.

Note than the integer 2 does not correspond to any possible value of 0 in a Nash equilibrium, since
#{ ∈  () 

 ≤ 2} = 1 6= 2.

0 1 2 3

n
l
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Figure 4: Three distinct Nash equilibria

Note we implicitly assume that the agents all hold a common belief 0 about the number of agents
joining the network. Since many possible 0 can yield a Nash equilibrium, this is a non-trivial assumption:
it would be perfectly rational for different agents to hold different beliefs about 0, as soon as these beliefs
correspond indeed to some Nash equilibrium.
As an example, consider the extreme case where − 1  

   for all agent . Assume all agents
hold the same belief. Then depending on this belief either nobody joins (if 

  0), or everybody joins
(if 

  0). Now if the beliefs are heterogeneous, using that − 1  
 we can see that if at least one

agent believes that the number of agents joining will be less than , that is, if only one agent assume
that another agent will not join, then it will not join itself, and that this will cause agents deciding to
join to select a non-profit maximizing solution for themselves.

3.5 Discussion and implications

The previous simple example, as well as considerations on the dynamics of the repeated game associated
with the previous one stage game described (Annex 6.4), both illustrate the importance of a given agent:

1) knowledge of its own adaptation costs and of the adaptation costs of others (since  determines

 ),

2) belief about other agents’ beliefs.

3 It could thus be said that, for most parameter constellations, the concept of Nash equilibrium alone does not allow to
"solve " the model, as there may be more than one Nash equilibrium. Instead, the concept provides us with a variety of
different plausible outcomes.
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Indeed both factors will contribute to shape a agent’s decision to join the network or not.

Now one could ask what would happen if the game was not of perfect information concerning the
individual agents’ adaptation costs. After all, it is not even certain that a given agent knows its own
adaptation costs, least the adaptation costs of others. If there is uncertainty about the other agents
adaptation costs, then the belief 0 of the number of agents joining might actually not be true. Probably,
there will not be heterogeneous beliefs anymore4 . Similarly, even in a game of perfect information, if there
is no consensus about 0, the number of agents assumed to be joining the network, then to decide to
join each individual agent  will compare its (individual) 

 to its (individual) belief 

0 . The resulting

solution cannot be guaranteed to be even a Nash equilibrium, even less one that maximizes social welfare,
understood here as the sum of agents profits. The policy implications are that any reduction of uncertainty
about the individual agents’ adaptation costs , the complete network operational costs  and the number
0 of agents which plan to join the platform improves aggregate welfare by diminishing the noise and the
possibility of mis-judgement of the effectiveness of the network by the agents. Reducing uncertainty can
be obtained by continuous discussion among agents, allowing for a common belief about 0 to emerge,
and by disclosure from the people in charge of establishing and operating the complete network (that is,
the manager or centralplanner) about its operational costs , and of its technical specificities, such that
agents could better guess their own adaptation costs , knowing what they will need to change in their
own technical system to become compatible with the complete network platform.

4 Extension of the model to longer intermediary chains

4.1 Introduction

4.1.1 Motivation

Our previous network model could be used unchanged to model the benefits of the network on the set
of intermediaries by re-interpreting the nodes as final investors and the links as the cheapest chains of
intermediaries allowing them to realise a latent profit. The cost of the link would thus be the overall
costs of the chain of intermediaries involved. Nevertheless, this modelling suffers from many flaws:
- it can only reflect the overall picture, as it fails to model the incentives of the different intermediaries

to build links between themselves to realise latent profits, as a single edge () represents a whole chain
of intermediaries from  to ;
- if we interpret the costs of using an edge of the network as the sum of the costs of the intermediaries

involved, this implies intermediaries do not make any profit from their intermediary function, a rather
unrealistic assumption. The way to interpret costs in this new setting would be the costs to the end
investors, that is, the cost component would include the margin of the intermediaries involved. Never-
theless, this constitutes a problem when we would like to allow the final investor (as modelled in the
network) to himself provide intermediary services to other players, since those intermediation profits
cannot be captured by the model;
- there is no way to get any precise idea of the dynamics of the costs involved, because nothing is

known about the length of the custodian chains and the different intermediation services used to carry out

4Using the concept of Bayesian Nash equilibrium, where the beliefs of market participants are elevated to the role of
strategies, does not seem to bring additionnal value to our discussion. Indeed, assuming for example believes of agent  for
the adaptation costs of agent  is absolutely continuous with respect to the Lebesgue measure and has density   , we can
compute, in a Bayesian equilibrium, the expected number of agents joining the network, from the point of view of agent
. It is just (0) = #{ ∈  () (0) ≥ (


 )}. Indeed, by the same reasonning as previously, the strategy for any

agent  is to join if, and only if, (0) ≥  . In an equilibrium agent  knows agent  beliefs and is thus able to compute

(0). Because it does not know, contrary to agent , agent  ’s adaptation costs, it computes (

 ) using its own belief

  about its competitor costs. Consistency of beliefs also implies that (0) solves

(0) = #{ ∈  () (

 ) ≤ (0)}. Hence, believes that does not make the above equality true are non-rational

and do not result in a Bayesian Nash equilibrium. Conversely it is easy to check that any strategy profile satisfying the above
is a Bayesian Nash equilibrium. Hence, compared to the simple Nash equilibrium concept, the Bayesian Nash equilibrium
only impose a rationality restriction on the beliefs.
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a trade. Furthermore, solving the model analytically as was done before assumes all cheapest custodian
chains have the same costs, whatever their length, a rather unrealistic assumption.

We develop an alternative model to tackle this issue by:

1) writing down a static version of our first model where the  periods are condensed into a single-
period decision game.
2) altering the rules of the payoff to allow each of the two nodes involved to derive profits from any

transaction it participates to settle.
3) generalising these payoffs rules to allow more than two intermediaries, and each of the intermediary

to derive profits from helping to realise a latent profit.

We then discuss Nash equilibrium, and a closely related concept of stability, as well as efficiency, of
this new model.

4.1.2 A static model of the first model

Assume all parameters are constant across time and space (an hypothesis we will refer to as time and
space homogeneity). The payoff for agent  to build edge () is 1

 −1 = 1
 −. Since in

the first model 1
 ≥ 

 for all  in 1 , and agents do not have any budget constraints, the optimal
choice is to build all the links that will be built at the first period of the model. Hence our previous
 -period dynamic model collapses into the (simplistic) one period game:

1) Each player (simultaneously) choose to establish a set of links.
2) They earn the associated payoffs as implied by the first model.

Players play as to maximize their expected payoffs.

Remarks:
- In 1) the decision rules are rather simple: player  build edge  if, and only if, 1

 ≥ . In
2), it earns  =

P
∈ ()−{}

(1
 − )1(1

≥).

- Since we assume all agents of the model are able to settle "domestic" trades, there is no reason to
include the profits derived from these trades in the payoff function associated to a given network. This is
the reason why domestic trades do not enter the definition of the payoff function .

4.1.3 Making intermediation profitable

Sharing benefits derived from trade in the previous static two intermediary model Now
notice that in the previous model player  earns nothing when a trade is settled using edge , whereas
 is, as , an intermediary for the realisation of the idea of trade (). Since we would like that all
intermediaries participating in the trade of a trade (), including the "final" intermediary , derive
some profit from their intermediation services, we modify the payoff rules such that both  and  equally
shares the profits from settling the trade (). Hence, realising the idea of trade () using the edge
 in the network incurs a profit of 1

2 both for  and for . Of course, this also modifies player 
best-response function which becomes: build a link if, and only if, 1

2 ≥  .
5

5Note also that holding the whole set of parameters constant, this new repartition of the (same) profits derived from a
given transaction decreases the number of links built and the aggregate welfare. This comes from the asymmetry between
player , which bears the full costs  of establishing the link, with player , which bears none but still share the profits.
Could this asymmetry be unrealistic considering the fact that player  and  could bilaterally negotiate to share the burden
 of building a new link? Asymmetry of information between player , which knows its clients (and knows they want
to invest in  domestic market), and player , which only knows player , could certainly help to explain this asymmetry:
only player  is able to evaluate 1

 properly, because it knows the demand for assets of the domestic market of player 
steaming from his own domestic market. player , not able to evaluate this demand itself, might want to avoid taking the
risk that player  was wrong. More fundamentally, sharing the costs of establishing a link could be assumed, and would
give rise to a different game, probably also very interesting by its own.
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Contrary to the costs  of establishing the link , the costs of using the link  is equally shared
by  and , because it is already included in 1

 = ( − ), the profits from settling the
trade () they will share. We define

0 := 

and
0 := 

We thus have 1
 =  −  = 0 − 0 for the total profit, which will be equally

shared between both  and . Hence the derived profit for  and  is:

0 − 0

2

In allowing more than the two final intermediaries to participate in a given trade, we can choose
to allow for three intermediaries, or more, or any number of intermediaries, insofar the trade is still
profitable. We will consider now the case of three intermediaries and of an arbitrary length for the chain
of intermediaries.

Allowing for a maximum of three intermediaries... or more We now want to allow for up to
three intermediaries. Hence, we change the rules of the game above to allow an idea of trade () to
be realised if, and only if, the edge () is in the network, or if there exists a node  such that both
edges  and  are in the network. If both situation occurs, then the trade is settled using the chain
of intermediaries (or path) of least cost, that is, the chain  if 0  0 + 0, and the chain 
if 0  0 + 0, where 0 :=  is the cost of using a given edge () in this new game.
If both chains incur the same costs, idem est if 0 = 0 + 0, then one of the two chains  or
 is selected randomly to settle the trade, both chain having the same probability to be chosen. The
gain is split equally between each intermediary of the chain selected. As we denote by 0 the profit
derived from settling transaction () in the static game, that is, 0 = , and a chain of
intermediary  is used, the profit of each of the nodes ,  and  for acting as intermediaries for
settling the transaction () is

0 − (0 + 0)

3

If the same transaction was settled using a direct link between  and , the derived profit for  and 
is:

0 − 0

2

This is consistent with the rule given in Section 4.1.3, where only two intermediaries are allowed. Nev-
ertheless solving the game is now far from being a simple one-parameter profit-maximisation problem,
since into the decision-making process of the nodes enter strategic considerations that take into account
the overall structure of the network, which in turn depends on the other players’ actions. To give a very
simple example, in both the three intermediaries and the arbitrary number of intermediaries model it
might be that althought 1

2  , a node  will choose not to build the edge  because it has
some intermediary  that already allows him to get enough profits from trades of type (). It might
also be the case that it wants to connect directly to node  because node  is connected to many other
nodes and thus increase its intermediation profits when compared to settling through . Node  and 
might also be in competition as intermediaries, particularly when their set of neighbours overlap.

We use in the next section exactly the same idea to define the rules of a payoff where any trade ()
can be realised insofar there exists a chain of intermediaries from  to  in the network not exceeding
a given fixed length and the sum of their costs do not exceed the latent profit from realising the trade
(). Some theoretical justification of this equal profit splitting allocation rule can be found in [49].
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Indeed, in the author model of stochastic bargaining involving different chains of intermediaries, when
the discount factor of the bargaining model tends to 0, that is, when players do not have sufficient time
to bargain over the splitting of profits without missing the trade opportunity — and thus become very
impatient — the expected payoff of each intermediary become equal.6 We are taking this view here; the
opposite view would be to assume agents have plenty of time to bargain before moving on to carry out
the trade; in such a case, according to [49], intermediaries which are not "essential" — meaning there
exits, in the network, another chain of intermediaries to which they do not belong — would earn a profit
of zero.

4.2 Studying the static game G
0
(  )

We formalise the previous ideas and define the following game on networks.

Notation 2 For simplicity of notations, we will from now on write  for 0,  for 0 and
 for 0. When there is space homogeneity of these parameters, we also drop the index, writing, for
example,  for .

Definition 3 A path is a network  whose nodes can be labelled  ( ) = {0, 1, 2,..., } such that
its set of edges is precisely ( ) = {(0, 1), (1, 2), ..., (−1, )}. We often write  = 0, 1,
2,...,  in this case, and say that  is a 0-path, or a path from 0 to . The length of  is ,
while its cardinality is  + 1.

Note that our notion of path thus have a direction: a path from  to  is not a path from  to , at
least when  6= .

Definition 4 Let  and  be two networks. Then  is a subnetwork of  if, and only if,  () ⊆  ()
and () ⊆ ().

Definition 5 A path of a network  is a path that is a subnetwork of .

Let  and 0 be two positive integers,  a set of node of cardinality  and , , and  real-valued
functions defined on the cartesian product 2 =  × . Players are the nodes in  and decide to link,
or not, to other nodes. Hence the action set of a given player  is the set of edges ( ) for  ∈  ,  6= .
If node  establishes the link ( ) to node  it has to bear a cost of ( ). Some paths in the resulting
network are used to carry potential trades that benefit all the players along those paths. More precisely,
for each ordered pair ( ) there is the potential for a trade of value ( ) to be realised. For the trade

6 It is of course not necessary to make intermediation profitable to all intermediaries to extend the model to more than
two intermediaries. Defining the profit rule such that the first intermediary on a chain of intermediaries derives all the
benefit from a given trade gives rise to a simpler, yet also interesting, problem. In such a setting, where node  earns the
whole profit derived from settling the trade of  −  when at the beginning of an intermediation chain of length , one
can easily prove that:
1) if  ≥ − then the empty network is a NE, and that it is the only NE if we assume further that  ≥ −+(−2)(−2)
2) the complete network is the only strict NE if, and only if,   
3) a directed cycle is a NE if, and only if,  − +  − 2+ +  − (− 1)  
3) the star is a NE if, and only if,  ≤  ≤  − 
4) If − +  −   0 then any NE is strongly connected, with diameter ∆  + 1
5) In a NE having more than two components, all vertices earn a 0 payoff.
Point 5) involves a very easy argument. Indeed, assumes  is a NE with at least two different components, with  and

 two nodes belonging to different components of  and with  earning a non-zero payoff   0. Because  is not
in the same component of  it does not derive any profits from trades with the vertices  is trading with.  can thus
strictly increase its profit by  by simply building an edge to each of the out-neighboors of , a contradiction with NE.
Notice this argument is not valid anymore if all intermediaries share profits, since the higher payoff of  maybe due to
its strategic intermediation role between vertices of its own component, and  cannot replicate  role in that matter as
it cannot replicate the edges  for  in-neighboor of . It is this more complex environment that we investigate in the
next section.
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to be realised there must be a path of length less than 0 in the network. A cost ( ) is associated to
each edge ( ) of the network. The cost of a path is simply the sum of the costs of all its edges. For
each pair ( ) ∈ 2 a -path of minimum cost can be selected for the trade if it is an admissible path,
that is, a path of length not more than 0 and whose costs do not exceed ( )7 . If more than one
such admissible path of minimum cost exist then the path used to perform the trade is selected randomly
among all admissible paths of minimum cost, the uniform probability distribution being used. Each node
of the selected admissible -path of minimum cost  = 1, 2,...,  =  receives an equal share of the
aggregate net profit 1 − (12 + 23 + + −1) derived from the trade, that is:

1 − (12 + 23 + + −1)



The player  are called the intermediaries of the trade. The two players 0 and  are its final
intermediaries, while players 2,..., −1 are its strict intermediaries. Players build edges such as to
maximise their expected payoff function.
In what follow we will assume for simplicity that , , and  are constant functions. Hence the above

profit simply becomes

 − ( − 1)


=: 

To write down players’ payoffs explicitly under this hypothesis it is useful to define a minimum path,
as minimum path correspond to path of minimum costs:

Definition 6 A minimum -path is a path from  to  of minimum cardinality. The set of all minimum
-paths is denoted by P, and the cardinality of any minimum -path by . For any positive integer
, the subset P≤

 of P is the set of minimum -path of cardinality less or equal than . We also set
P≤∞ := P for convenience.

Definition 7 A minimum path is a path such that there exists two nodes  and  such that it is a mini-
mum -path. We denote by P the set of all minimum paths of the network. Hence, P =

S
{}⊆ ()

P.

Since the cost function is constant, the set P of minimum -path is precisely the set of paths of
minimum costs, from  to  and the set P≤0

 of minimum -path of cardinality less or equal than 0
is precisely the set of admissible -paths. The full expression of the payoff function for agent  of the
network in the game G

0
(  ) can then be expressed as:

 =
X

∈ ()
#P≤0 0

µ
 − ( − 1)



¶
#{ ∈ P≤0 |  ∈ }

#P≤0


1((−1))

We will always denote by 0 the maimum number of intermediaries allowed in the rule of the game,
and set 0 = +∞ if chains of intermediaries of arbitrary length are allowed. Note that for any given
game with  players, allowing an infinite number of intermediaries is equivalent to allowing at most 
intermediaries. That is, for all , we have: G

∞(  ) = G
(  ). Also note that in the formula giving

agent ’s profits we always have  ∈ {1 2  0} for all pairs of nodes () which appear in the sum.
Finally, because paths of cardinality  such that   ( − 1) are not admissible, we have that for all
, G

0
(  ) = G

min(0

+1)

(  ). Hence we can assume without loss of generality that 0 ≤ 
 + 1.

This allow to drop the factor 1((−1)) in the expression of .

7Deleting this assumption would result in a different still interesting problem, where the nodes of the network are actually
obliged to perform the transaction, even in case they take a net loss.
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Definition 8 A Nash equilibrium (resp. a strict Nash equilibrium) is a strategy profile  in which any
agent deviating unilaterally would not be better off (resp. would be worse off).

Because this payoff function takes into account the overall structure of the network by making the
set of all minimum paths containing  a pre-requisite for computing ’s profits, it can be very difficult to
characterise all nodes’ strategies that result in a Nash equilibrium. Indeed, because from a given strategy
a unilateral deviation from a given player consists in building or deleting edges starting at  at the same
time, thus reshaping the set of all minimum paths in a way difficult to predict, we will often restrict
ourselves to the more general notion of stability:

Definition 9 A network  is stable (resp. strictly stable), if, and only if, adding or deleting any single
edge ( ) would not increase agent ’s profits (resp. strictly increase agent ’s profits).

This would translate the idea that given an initial network, each node in turn only considers one edge
at the time, computing whether it would be better off by severing it if this edge is in the network or by
creating it if it is not in the network. In a stable network no node would add or delete an edge.

Proposition 10 If  is a Nash equilibrium (resp. strict Nash equilibrium) then it is stable (resp. strictly
stable).

The proof is trivial and follows from definitions. Hence characterising the set of all stable networks or
establishing some necessary properties of these networks certainly establishes the same properties for the
more restricted class of Nash equilibrium networks. Note that the converse need not be true, although
stable graphs which are not Nash equilibria appear to be somehow difficult to construct.

Remark 11 The question of defining a family of stable graphs which are not Nash equilibria is left open.

Definition 12 The distance between a given pair of nodes ( ), denoted by ( ), is the length of a
minimum -path. If no such path exists it is set equal to +∞.

Definition 13 A network is strongly connected if, and only if, for any pair ( ) of its nodes, there
exists a path going from node  to node .

Definition 14 The diameter ∆ of a network is defined by ∆ = max{( )  6= }.

The diameter of a network is thus the maximum distance between any two nodes of the network.
Note that the diameter of a network is finite if, and only if, the network is strongly connected.

Proposition 15 If   −
2 then any stable network is strongly connected and its diameter satisfies

∆ ≤ min(0 − 1
+
2
+

+
2
−
).

The proof is provided in Annex 6.5.

Notice in passing that another (weaker) necessary condition for the minimum path to be able to carry
out trade is that  − ∆  0 ie ∆ ≤ . Hence the above results also contains the somehow simpler
condition that ∆ ≤ .
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Remark 16 The question of the optimality of the bound is left open.

Definition 17 Let  be a network and  be a node of . We denote by +() the set of all nodes
towards which  maintains a link, and by −() the set of all nodes which maintain a link towards .
The cardinality of +() is called the out-degree of , and is denoted +(), while the cardinality of
−() is called the in-degree of , and is denoted −().

Definition 18 Let  be a network. The maximum out-degree of  is the maximum of the set of the
out-degrees of the nodes of , that is: +() = max{+()  ∈  ()}. It is denoted +(). Similarly,
the maximum in-degree of  is the maximum of the set of the in-degrees of the nodes of , and is denoted
−(). Hence −() = max{−()  ∈  ()}.

4.3 Extreme cases: no links, or all the links

4.3.1 The empty network

Proposition 19 If  ≥ −
2 then the empty network is a Nash equilibrium.

Proof. If any player deviates unilaterally from the strategy profile yielding the empty network, it
means it has built some number  of edges. But building such edges incurs a cost of , and a profit of
only  −

2 . Since  −
2 −  ≤ 0, this player is not better off.

Clearly, if a strict inequality hold, the empty network becomes a strict Nash equilibrium.

Note that if −
2 ≤   −  deviating would be socially strictly more efficient. Indeed, the aggregate

profit would be of  − −   0.

Remark 20 This proposition does not imply that the empty network is the only Nash equilibrium. For
example, assume   2 and −

2 ≤  ≤ −
2 + −2

3 . Then the circle of cardinality three is a strict Nash
equilibrium, as well as the empty network.

Nevertheless we have the following result:

Proposition 21 If   −
2 + 2( − 2) −23 1(02) + ( − 2)( − 3) −34 1(03) =: 0, then the empty

network is the only strict stable network (and the only strict Nash equilibrium).

The proof is provided in Annex 6.5.

4.3.2 The complete network

Proposition 22 If   +
6 , then the complete network is the unique strict stable network (and it is a

strict Nash equilibrium).

Proof. Suppose   +
6 and let  be a stable network. First, since +

6  −
2 we have that

  −
2 and thus by Proposition 15 the network is strongly connected. We then prove a property

called transitivity: if () is in the network and () is in the network then () is in the network.
Together with strong connectivity it can easily be checked that it implies the network  is the complete
network.
Let () and () be two edges in the network. Assume by contradiction that the edge ()

is not in the network. Then the additional profit for  to build edge () is equal to the sum of the
additional gains from trades of type () and of the intermediation fees from all new minimum paths
using , minus the cost  of building . Since the additional gains from being able to settle trades
with  directly (without using  as an intermediary) are −

2 − −2
3  , the node  is willing to create

the edge (), a contradiction with stability. Hence the edge () was already there. This concludes
the proof.
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4.4 Intermediate cases

The following results single out the complete star as being a remarkable structure, since it is always a
NE when the costs of building new edges are neither too high, nor too low. Again, there may exists other
NE, like the triangle mentioned in Remark 20.

4.4.1 Characterisation of stable and Nash equilibrium complete stars

Proposition 23 Assume   2. A complete star of size  is a stable network if, and only if,

1

6
( + ) ≤  ≤  − 

2
+ (− 2)

µ
 − 2
3

¶

Proof. a) No leaf is strictly better off creating a new link if, and only if

 − 

2
−  −  − 2

3
≤ 0

b) Nor to delete one, if, and only if,

 ≤  − 

2
+ (− 2)

µ
 − 2
3

¶

c) The center does not want to delete a link, if, and only if,

 ≤  − 

2
+ (− 2)

µ
 − 2
3

¶

which happens to be the same condition as for a leaf not to delete a link.

The inequality, if strict, characterises stars that are strict Nash equilibrium.

Interestingly, the condition for a complete star to be a stable network (resp. strict stable network) is
the same as for being a Nash equilibrium (resp. strict NE):

Proposition 24 Assume   2. Then stable complete stars are also Nash equilibria

The proof is provided in Annex 6.5.

Notice that, holding all parameters except  constant and making  tend towards infinity, there exists
a threshold from which the complete star becomes a Nash equilibrium. This is in line with the intuition
that when the number of agents in the economy increases, it becomes more useful to have a single
intermediary (and pay to it fees for its intermediation services) than to establish connections towards
each individual agent.

Remark 25 This does not imply that a subnetwork or a induced subnetwork of a network which is a star
will be stable if it satisfies this condition, since strategic considerations involving nodes outside the star
may dominate. For example, if a star is a subnetwork of a bigger network and some leaf  of the star is
linked to many vertices outside the star, another leaf  of the star may want to establish a direct link to
 to derives higher profits from trades with those out-neignboors of  which are not in the star (avoiding
the center of the star as an intermediary for such trades). Hence, the concept of stability of a network
does not translate easily to its subnetworks.
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We now turn our attention specifically to the case where only a maximum of three intermediaries is
allowed. Although such an assumption is clearly restrictive, this model will still capture the dependency
of a node’s strategic choice relatively to the overall network topology. Hence, the three intermediaries
cases can allow us to understand the nature of strategic interactions better.

As previously shown, for some constellations of parameters the complete star, the complete network
or the empty network are stable networks or Nash equilibria. Nevertheless, to characterise all stable
networks or Nash equilibria for any constellation of parameters is still an open question even in the three
intermediaries case.

4.4.2 Characterisation of stable regular uninetworks

We saw that when the cost of establishing an edge  is neither too high nor too low, the complete star
is always a stable network and a NE. The complete star exhibits two particular features: the first is that
any two nodes are linked by a unique path, implying there is no alternative paths for any given trade.
The second is the asymmetry of this network: the center has to sustain the costs of links towards all
other vertices of the star, and derives benefits from all the trades of the network, whereas the leaves have
only to pay for a single link, but are the strict intermediaries of no trade. A natural question is thus
to ask if a more "balanced" structure — by which we mean more symmetry in the underlying network
— would necessarily provide alternative paths for dealing with a same given trade. This section answers
this question by the affirmative: a more regular structure implies more alternative paths for carrying out
a given trade. Very symmetric and stable structure cannot exhibit monopolistic properties with respect
to the choice one has to execute a trade, there can be no monopoly from a single node on the trade roads.

When the parameters are homogenous, it makes sense to look at symmetric equilibrium, that is,
equilibrium where all players play the same strategy. This is because looking at symmetric equilibrium
is consistent with not favouring one agent more than another in predicting the network that will result
from the game. More precisely, a symmetric equilibrium is a vertex-transitive graph, that is, a graph 
for which, for any player ,  there exists a graph automorphism  of  such that  to . Hence, both 
and  are indeed playing exactly the same action with respect of the other nodes once a proper relabelling
of the names of the players has been applied. These are thus very "balanced" networks. In particular,
these networks are -regular, that is all their nodes have out-degree and in-degree . We say a network is
regular if there exist a natural number  such that it is -regular. In what follows we will actually study
the more general case of regular networks (some regular networks do not arise from symmetric strategies,
but from other, less stringent, strategies).

Given a game G
0
, that is, a maximum number 0 of intermediaries allowed, a uninetwork is a network

such that each trade () has precisely one corresponding admissible path. For example, in the case
of G

3 , that is, when a maximum of three intermediaries is allowed, a uninetwork is such that for any
trade () either  is directly linked to  or there exists a unique intermediary  such that ()
and () are in the network. Consequently the structures depicted in Figure 5 cannot be subnetworks
of any uninetwork of a game G

3 , and, by extension, of any uninetwork of G

 for  ≥ 3.

In our model, we do not need a given node  to possess a closed path towards itself to carry out a
domestic transaction. Nevertheless, to use results from algebraic graph theory, we will make here this
requirement, that is, we ask that in a uninetwork there is precisely one single admissible path from any
node  to any node  with possibly  = . Admittedly, this imposes more structure than should
have been the case, but this additionalrequirement enable us to use the classic algebraicresult that the
( )th entry of the th power of the adjacency matrix of a graph gives the exact number of walks
from node  to node  . We use one of Gimbert [20]’s main theorem to derive a necessary condition
for a regular uninetwork to be stable. Because the condition cannot be fulfilled for any parameter
constellations we then deduce there exists no such object. For the games G

 with  ≥ 4, the inexistence
of stable regular uninetwork is straightforwardly implied by a result from the literature that there exists
no regular uninetwork with a unique path of length at most  for  ≥ 3 between any two vertices. This
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Figure 5: Forbidden subnetworks in uninetwork G3

partial result of unstability of regular uninetwork favours the view that more balanced networks do indeed
provides nodes with alternative means of carrying out the same trade, as opposed to the most centralised
network, the complete star.

Definition 26 Given a network  the line-network of  is the network  with set of nodes  () =
(), the set of edges of , and where a node () of  () is linked to a node () of  () if,
and only if,  =  in .

Theorem 27 [Gimbert] Let  ≥ 2. There exists a unique -regular network for which there exists a
unique path of length 1 or 2 between any two distinct nodes and a unique closed path of length 2 from any
given node to itself: it is the line network +1 of the complete network +1.

Figure 6 illustrates such a network for  = 2:

Figure 6: The unique regular uninetwork of degree 2

Proposition 28 Assume   2 Then a -regular network is stable if, and only if,

2

µ
 − 2
3

¶
+

µ
 + 

6

¶
≤  ≤  − 

2
+ 2

µ
 − 2
3

¶

The proof is provided in Annex 6.5.
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4.5 When linking up networks does not re-organize them: some examples.

Real-life networks are seldom completely built from scratch. Rather, they usually arise from linking up
pre-existing networks. In a market-environment with no central social planner, linking up is left to the
incentives of individuals. Hence there is always the possibility that the linking, left to individualistic
profit-maximising agents, would not result in an efficient network for the whole, even though taken
individually each pre-existing network (which could be thought as, for example, national markets before
the opening of their borders) was efficient. That is, the incentives of the agents in linking these different
historical networks may not lead to an efficient network of the whole.
The notion of incentives is, in our framework, captured by the notion of stability and Nash-equilibrium.

Indeed, by definition in a strict Nash equilibrium no player would add and/or delete any set of links,
since it would result in a lower payoff for him. In a strict stable network, no player would add a single
new link nor delete a single existing link for the same reason. Now the problem of knowing if letting
individual agents linking separated networks leads to an efficient network can be easily formalised in
the following way: a certain number of efficient networks 1, 2,...,  are suddenly considered as the
different disjoint parts of a (bigger) aggregate network . Which structure will arise? Will this structure
be efficient? Are there many different structures that can arise from such an operation or is the outcome
predictable?

Definition 29 formalizes this idea:

Definition 29 A network  has a partition {  ∈ } of subnetworks if, and only if, each  is a
subnetwork of , and each node of  belongs to a unique . In other words:

() ⊆ () for all  ∈  and  () =
a

∈
 ()

We see that asking  to be stable, or to be a Nash equilibrium, is actually simply rephrasing the
previous problem in the particular case where none of the pre-existing networks 1, 2,...,  has been
modified - and thus all are still present as such in the resulting aggregate network. That is, "domestic"
structures were preserved and linked in a way compatible with the individual incentives of each node.
How does this linking occur? Does it lead to an efficient network for the whole without the need for
coordination of the economic agents involved?

A simple example where the answer is affirmative is for parameter constellations such that  
+
6 . Indeed, by Proposition 22 we know that the unique Nash equilibrium network in that case is the
complete network, and it is easily checked that it is also efficient. Now it can easily be show that taking
the union of any number of complete networks will result in a global network which is also complete,
hence also efficient for such constellations of parameters: since   −

2 the union, at equilibrium, will be

strongly connected. Because   +
6 = −

2 − −2
3 one can prove that transitivity holds at equilibrium,

and conclude as in the proof of Proposition 22.

Theorem 31 and Theorem 36 give an insight in the case where the pre-existing markets were complete
stars, and assuming the star structure on each (national) pre-existing network is maintained in the
equilibrium. These theorems provide a condition under which the supremacy of the centers of a star
is in fact re-enforced by aggregation, since each foreign leaf wants to send a link to the center of each
stars, and to their center uniquely. This proves that, for some constellation of parameters, aggregation
of different markets can actually increase the power of the historical "oligopoly" (formed by the centers
of the stars) instead of creating new, alternative intermediation chains.
We then prove that, for a wide range of parameters, these resulting networks are Pareto-dominated

by the complete star. In particular, they cannot be efficient. More precisely, we will prove that the leaves
would always be better off in a complete star, while for the center  of star  this depends on a condition
that interlinks the size of the network, the size of  and the number of other stars.
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Definition 30 Define a multistar as a network  having a partition {  ∈ } of complete stars  of
center  such that each of the node  ∈ {  ∈ } is linked to precisely all the {  ∈ } and each of
the center  is linked to precisely all the nodes in ( \ {}) ∪ {   ∈ \{}}. We then say that  is a
multistar with partition {  ∈ } of complete stars . The leaves of the multistar  are defined as the
leaves of the   ∈ .

s s s1 2 3

x

Figure 7: Representation of a multistar. Only all the links of a single leaf, the node , are represented in
the picture for clarity.

Theorem 31 Assume   2 and   +
6 . Let  be a strict Nash equilibrium. Then there is a threshold

0 ≤ 3
−2(−

+
6 )+1 such that, if  has a partition {  ∈ } of complete stars, where  denotes the

center of star , and such that, for all  ∈ , we have:

|(+() ∩ )\
[

∈
+()|  0 ()

then  is a multistar with partition {  ∈ } of complete stars.

A similar result to Theorem 31 can be derived if we allow more than three intermediaries (Theorem
36, Annex 6.5). The proof is of Theorem 31 is provided in Annex 6.5. Conversely, it can be checked that
this unique possible structure is indeed a NE when we had the now well-known necessary condition that
 ≤ −

2 + (− 2)−23 , together with a sufficiently high degree for each center of the stars.

Proposition 32 Let  be a multistar with partition {  ∈ } of complete stars . Assume moreover
than +()− ||+ 1  0 for all  ∈ , and that +

6    −
2 + (− 2) −23 . Then  is a strict Nash

equilibrium.

The proof is provided in Annex 6.5.

4.5.1 Efficiency comparison between stars and multistars

The previous section showed how multistar can endogenously arise from the linking up of stars, with each
star having its previous links preserved, as formalised in the definition of the partition of the network
we provided (Definition 29). Assume  is a multistar with partition {  ∈ } of complete stars  of
center . When +()− ||+1   for all , and

+
6    −

2 +(−2) −23 , we know by Proposition
23 and Proposition 32 that both the complete star and the multistar are strict Nash equilibrium. The
question then arises to know which of the two networks is the most efficient from an aggregate perspective
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(social welfare). This has clear policy implications, if we remember that the multistar arises naturally as
an equilibrium when the re-organisation of the network obtained from various disjoint stars is left to the
individual, profit-maximising agents of each of the stars. We characterise parameter constellations for
which, from an aggregate utility perspective, the star is always a more efficient network than a multistar.

Theorem 33 Let ( ) = 54−1− (−2) . Let  be the closest positive number to ( ). Then
among all the multistars, the ones with presicely  centers are the most efficient networks.

The proof uses simple combinatorics arguments and the maximisation of the aggregate cost function.
It is relegated to Annex 6.5.

Corollary 34 If ()  15 then the star is more efficient than any other multistar.

To compare stars and multistars, we can also use the notion of Pareto-domination for unlabelled
graphs. We will convene that a (unlabelled) network  Pareto-dominates another (unlabelled) network
 if there is some way to relabel the vertices of  such that each node in the relabelled network is
better off than in .8 A characterisation for stars to Pareto-dominate multistar in that sense is given in
Theorem 39 in Annex 6.5.
Notice that the arising inefficiencies of multistars do not come from the fixed investments spent for

building links - as would undoubtedly also be the case in real life - but lie uniquely in the new individual
incentives for reshaping the network that take into account the pre-existing structures and thus are not
enough to lead to an efficient resulting network. This finding has obvious policy implications, such as the
potential benefits of the intervention of a "social planner" for re-arranging by himself the network or for
acting as a catalyst for coordination among the different players, or for introducing incentives exogenous
to the network that could help fostering a more efficient aggregate network.

5 Conclusion

We defined rules for network formation to model a variety of situations, including cross-agent links or,
alternatively, banks holding an account with each other’s for the purpose of securities settlement. These
evolving network models are fairly general and can be used in any setting where building a link incurs
immediate costs to the builder of the link but also potential future rewards. We applied our models,
assuming a hypothetical pattern of trade, both in the case of an evoluting network, where links are
created when the expected benefits derived from them are higher than the costs of establishing them, and
in the case of a complete network, where all links are present. This allowed us to compute the difference
in profits in the two situations. This difference is a closed-form formula which makes analytically explicit
the different types of benefits stemming from establishing a complete network: the possible reduction of
the costs of domestic trades, the reduction of the costs of cross-border trades, the additional profits from
better coverage, and the difference between the current fixed costs due to economies of scale.
We then modelled the decision to join or not of the agents based on these results. We found that

the decision to join of a given agent is highly influenced by other agents’ costs and assumed decisions.
In particular, in some situations that we characterise, some level of synchronisation between agents who
plans to join can be useful for them to reach more efficient Nash equilibria. If negative believes and lack
of coordination are too strong, agents may be stuck in a Pareto-inferior Nash equilibrium. The policy

8 It is easy to see how the notion of Pareto-domination for an unlabelled graphs may differ from the more common game
theoretic Pareto-domination. For example consider two identical complete stars of same size  and , and assume their
center earns more than their leaves. Suppose also that node 1 is the name of the center of  but the name of a leaf in
. Then  does not Pareto-dominate  as a labelled graph, since the node 1 is worse off in the network  than in the
network . But  does Pareto-dominate  as an unlabelled graph: there is a way to re-labell its vertices so that to obtain
a labelled graph which Pareto-dominates : any re-labelling where the center of  has the same name as the center of 
will of course do.
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implication is that incentives for agents to synchronize their moves into the network are useful in certain
situations. The desirability of such synchronisation depends on the dispersion of the agents’ individual
adaptation costs along the real line, and we gave an explicit condition of when synchronisation for moving
to the network is useful.
We concluded the article by a purely theoretical section analyzing different general network structures,

and deriving the conditions for such networks to be stable — that is, no individual in the network would
be better off by adding or deleting a link it has some power on. In particular we derived two theorems in
which the overall network, obtained by linking up stars, is not efficient nor Pareto-efficient, but is stable.
This emphasizes the theoretical need, in some case, for a "social planner" to re-arrange the network or
at least act as a catalyst in the new network formation, in particular in complex networks obtained by
linking pre-existing networks, even when these smaller networks were, individually taken, efficient. We
signal that further work is needed to characterise, in this context, the whole set of efficient networks, as
well as of stable networks and Nash equilibrium network, but that it appears a difficult tasks, in particular
when long chains of intermediaries are allowed, because of the strategic considerations at play, which are
function of a greater portion of the topology of the network.
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6 Annexes

6.1 Annex 1: derivation of profit expectations for a r-regular, non-evoluting
network

Taking expectation on both sides of the previous expression of profits yields:

() =
R

∈Ω

P
=1
(() − ())1(∈())() ()− 

=
P
=1

R
∈Ω

(() − ())1(∈() and  is a loop)() ()

+
P
=1

R
∈Ω

(() − ())1(∈() and  is not a loop)() ()− 

=
P
=1
( − )

R
∈Ω

1(∈() and  is a loop)() ()

+
P
=1
( − )

R
∈Ω

1(∈() and  is not a loop)() ()− 

The integral in the first sum is equal to  ( ∈ () and  is a loop) =  ( is a loop) ( ∈ () |
 is a loop) = 1 and the second to  ( ∈ () and  is not a loop) =  ( is not a loop) ( ∈ ()
|  is not a loop) = (1− ) 

(−1) , hence we get:

() = 
P
=1
( − ) +

(1− )

(− 1)
P
=1
( − )− 

Supposing for simplicity gains and costs do not vary over time, we get:

() = ( − ) +(1− )


(− 1)( − )− 
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6.2 Annex 2: Closed form formula for evolving networks

6.2.1 Analysis of the second model

General formula for the profits Without loss of generality, we can assume 
 = 0 for all edges

 already there before period 1. From the definition of the first model, it is easy to see that the profits
associated to a given sequence of ideas of trade ()=1 are:

 =
P
=1
max(0  − )1E −

P
=1

P
∈()


1(

≥
)∩E

−1


−  (1)

where we denote by E the event that  is an edge before step 3) of period .

We assume in the following that  and  do not depend on the edge , so that we can write:

() =
P
=1
max(0 − ) (E


)−

P
=1

P
∈()


 ((

 ≥ 
)∩E−1 )− ( 0

1)

The expected profits at time  derived from a given edge  can be expressed as:


 =

P
=

max(0  − )

 (1)

The event (
  

) = { ∈ Ω 
()

≥ 
()

} can be different from the whole universe and
the empty set because it depends on the edge  which is a random edge, and thus on the probability
distribution for selecting an edge. Hence the probability of this event will depend of the probability

measure defined on Ω, usually  =
N
=1

 . In the sections illustrating evolving network we actually avoid

this difficulty by making strong assumptions of uniformity across the parameters of the different edges,
namely, the same assumptions of homogeneity among cross-border and domestic links as in Section 2.2.3.

6.2.2 Analytical resolution: a closed-form expression of the network benefits

Assume the same set of assumptions on the parameters of the model as in Section 2.2.3. Suppose  is
not a loop and let us re-write the event (

 ≥ 
) in this context; using equality (1) we can write:


 ≥ 

 ⇔
P
=

( − ) ≥ 
 ⇔ ( − + 1)( − ) ≥ ⇔  ≤ 

where  =  + 1−
¥


(−)

¦
.

Thanks to our simplifying assumptions we can re-write the expectation of the profits as:

() = ( − ) +
P
=1
( − ) (E


 ∩ ( is not a loop))

−
P
=1

(− 1) ((
 ≥ 

) ∩ E−1 ∩ ( is not a loop))− 

Now

 (E ∩ ( is not a loop)) =  (E |( is not a loop)) ( is not a loop))

= (1− )
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where

 =  (E |( is not a loop)) =  (
S

=1

(
 ≥ 

 |( is not a loop)))

=
P

=1

(−1)−1 P
{1}⊆{1}

 (
T

=1
(

 ≥ 
 |( is not a loop)))

Note that for all , (
 ≥ 

 |( is not a loop)) is either Ω or ∅ (depending if  ≤  or not), hence this
family of events is independent of any other event. In particular, for any  and , the event (

 ≥ 
 |(

is not a loop)) is independent from (
 ≥ 

 |( is not a loop)). Hence we have

 (
T

=1

 ≥ 

 |( is not a loop)) =
Q

=1
 (

 ≥ 
 |( is not a loop)) =

Q
=1

1(≤)

Hence

 =
P

=1

(−1)−1 P
{1}⊆{1}

Q
=1

1(≤)

Erasing the (eventual) terms which are 0 in the second sum gives:

 =
P

=1

(−1)−1 P
{1}⊆{1min()}

1

=
P

=1

(−1)−1
µ
min( )



¶

Remark: In particular if  ≥  then  = 1, using the binomial formula on 0 = (1− 1).

We now turn to the computation of  ((
 ≥ 

) ∩ E−1 ∩ ( is not a loop)). Our hypothesis
on the probability distributions at each period and on the costs and gains of edges implies the two events

(
 ≥ 

|( is not a loop)) and E−1 |( is not a loop) are independent. Note that under other
assumptions this need hardly be the case since a higher gains relative to costs for a particular edge can

both increase the probability that 
  

 and decrease the probability of E

−1.

 ((
 ≥ 

) ∩ E−1 ) ∩ ( is not a loop)

=  ((
 ≥ 

) ∩ E−1 |( is not a loop))(1− )

=  (
 ≥ 

 |( is not a loop)) (E−1 |( is not a loop))(1− )

= 1(−1≤)(1− −1)(1− )

since our assumptions also imply  (E−1 |( is not a loop)) =  (E−1 |( is not a loop)) for all .

Now plugging these values back into our formula ( ) we get:

() = ( − ) + ( − )(1− )
P
=1



−(− 1)(1− )
P
=1
1(−1≤)(1− −1)− 

Here again to find the expected benefits of the network we subtract the formula applied to both
networks, after a proper indexing of the parameters which differ across the two networks, that is, the
costs, thus holding the transaction flows constant for the comparison. For the complete network  = 1
and  = 0 hence:
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( with the network) = ( − 
 ) + ( − 

)(1− ) − 


Subtracting ( 0) from this formula yields the expected benefits from adopting the network:

( − 
 ) + {( − 

)(1− ) − ( − )(1− )
P
=1



−(− 1)(1− )
P
=1
1(−1≤)(1− −1)}+  − 



which can be further re-arranged as:

( − 
 ) + (1− ){( −

P
=1

) + (
P
=1

 − 
)

−(− 1)
P
=1
1(−1≤)(1− −1)}+  − 



Discussion on the analytical split-up of the network benefits We see that in the case of an
evoluting network, the break-up of the network benefits is similar to the one discussed in the case of a
non-evoluting network in Section 2.2.3. For example, the first term represents the benefits from domestic
trades and is the same than in the non-evoluting model. This is because since all agents were assumed
to be able to settle domestic trades, giving them the ability to build new links does not influence the
benefits linked to the trade of those trades.

Now, the quantity
P
=1

 is an indicator of density of the network and play a role similar to the term

 
−−1) of Section 2.2.3. One way to see this is to consider what happens when  tends to 0. Then it

becomes more and more profitable to build edges, hence , which is the probability that the idea of a

trade selected at period  involves an edge already built, tend to 1, and
P
=1

 tend to  . The additional

profits ( −
P
=1

) derived from trade that could not be realised before thus tend to 0.

There is another interesting way to interpret this density indicator. First, note that all these results
are derived with perfect information from part of the agents, which are assumed to know perfectly what
is the probability distribution of the ideas of the trade wanted to be realised. Now assume for one instant
it is not the case anymore, for example because this probability distribution has changed and the agents
are not immediately aware of this fact, or are still learning about the new probability distribution of
the ideas of the trade. Then , which is the probability that the right edge be at the right place at
the right time, will necessarily be lower than in our perfect information case. Hence the benefits term

( −
P
=1

) from not missing any trade trade opportunities with the network will be even higher

than in the perfect information case. Hence the indicator is factoring in more benefits when the idea of
trade pattern is not know or ever changing — which is more likely to be the case in the real world.

The term 
P
=1

 − 
 , if positive, reflects the decrease in aggregate costs for cross-border

trade. Note that here also this term could be negative, that is, the aggregate costs of cross-border trade
could actually increase with the adoption of the network, in case of a large increase in the volume of cross-
border trades. In any case, that would not be a loss for agents as the overall term (1 − ){( −
P
=1

) + (
P
=1

 − 
) would be positive.

The term ( − 1)
P
=1
1(−1≤)(1 − −1), which has a negative sign in the analytical expressions,

indicate the cost-reduction in the building of new links due to the network.
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The last term is the same and has the same interpretation as in Section 2.2.3.

To conclude, the discussion of the closed-form formula for the benefits of the network versus an
evoluting network with perfect sighted agents provides a robustness test to the non-evolutionary formula,
since most terms have similar representatives in the more complex formula.

6.2.3 Analysis of the second model

The analytical resolution of the second model, where agents are given the ability to react to the ideas of
trade by building links in response to a given idea of trade wanted to be realised, is more complicated
than the previous model. Nevertheless, we provide the closed-form formulas as a robustness check for
the profit break down already commented previously in Section 2.2.3 and 6.2.2. Hence, these technical
derivations could be skipped without impacting the understanding of the rest of the article.

General formula for the profits It is clear that, from the definition of our model, the profits asso-
ciated to the realised sequence of idea of trade () is:

 =
P
=1
max(0  − )1Q


−

P
=1


1(





)∩Q−1



−  (2)

where we denote, for a given edge  by Q
 the event that  is an edge after step 4) of period 

(that is, after possibly being created at step 3) of period ).
In the next line we assume that , 


 and  do not depend on the edge , so that  , 




and  are not random variable but deterministic functions and we can write:

() =
P
=1
max(0  − ) (Q

)−
P
=1


 ((


  

) ∩Q−1
 )−  ( 0

2)

Of course, the expected profits, at time t, derived from a given edge , can be expressed as:


 = max(0 


 − ) +

P
=+1

max(0  − )

 (2)

Analytical resolution: a closed-form expression of the network benefits We make again the
same assumptions as in Section 2.2.3 and Section 6.2.1 concerning the probability of an idea of a trade
being cross-border, and about the costs and gains associated with domestic and cross-border trades.
From (2) we get, assuming  is not a loop:


 ≥ 

 ⇔ ( − )(1 + ( − )) ≥ ⇔  ≤ 

where  =  +
¥1−(−)



¦
.

From ( 0
2) we can thus deduce:

() = ( − ) +
P
=1
( − ) (Q


 ∩ ( is not a loop))

−
P
=1

 ((
 ≥ 

) ∩Q−1
 ∩ ( is not a loop))− 
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Now

 (Q
 ∩ ( is not a loop)) =  (Q

 |( is not a loop)) ( is not a loop)

=  (
S

=1
(

|( is not a loop)))(1− )

where 
 = (


 ≥ 

) ∩ ( was selected at period ) = (
 ≥ 

) ∩ ( = ). Using the exclusion-
inclusion formula again we get

 (
S

=1
(

|( is not a loop))) =
P

=1

(−1)−1 P
{1}⊆{1}

Q
=1

 (

 |( is not a loop))

=
P

=1

(−1)−1 P
{1}⊆{1−1}

Q
=1

 (

 |( is not a loop))

+
P

=1

(−1)−1 P
{1−1}⊆{1−1}

 (
)

−1Q
=1

 (

 |( is not a loop))

with  (
) =  (

 ≥ 
) ( = ) =  (

 ≥ 
) = 1(≤)

If {1  } ⊆ {1 − 1} then

Q
=1

 (

 |( is not a loop)) =

Q
=1

 ((
 ≥ 

) ∩ ( = ))

=
Q

=1
 ((

 ≥ 
)) ( = )

=
Q

=1
1(≤) =  



Q
=1

1(≤)

If {1  −1} ⊆ {1 − 1} then, similarly:
−1Q
=1

 (

 |( is not a loop)) =  −1



−1Q
=1

1(≤)

Note here that the upper index in  
 and  −1

 denote a power, not the time.

Hence

 (
S

=1
(

|( is not a loop))) =
P

=1

(−1)−1 


P
{1}⊆{1−1}

Q
=1

1(≤)

+
P

=1

(−1)−11(≤)

P
{1−1}⊆{1−1}

−1Q
=1

1(≤)

=
P

=1

(−1)−1 


µ
min(− 1 )



¶
+ 1(≤)

P
=1

(−1)−1 −1


µ
min(− 1 )

 − 1

¶

Let us now compute  ((
 ≥ 

) ∩Q−1
 ∩ ( is not a loop)).

 ((
 ≥ 

) ∩Q−1
 ∩ ( is not a loop)) =  ((

 ≥ 
) ∩Q−1

 |( is not a loop))(1− )

= 1(≤)(1−  (Q−1
 |( is not a loop)))(1− )
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with

 (Q−1
 |( is not a loop)) =  (

−1S
=1
(

|( is not a loop))

=
−1P
=1

(−1)−1 P
{1}⊆{1−1}

 


Q
=1

 (
  )

=
−1P
=1

(−1)−1 


P
{1}⊆{1−1}

Q
=1

1(≤)

=
−1P
=1

(−1)−1 


µ
min(− 1 )



¶

We thus get the general formula (recall  =
1

(−1) ):

() = ( − ) + (1− )
P
=1
( − ){

P
=1

(−1)−1
(− 1)

µ
min(− 1 )



¶

+1(≤)
P

=1

µ −1
(− 1)

¶−1µ
min(− 1 )

 − 1

¶
}

−(1− )
P
=1
1(≤)(1−

−1P
=1

(−1)−1
(− 1)

µ
min(− 1 )



¶
)− 

Applying the result for the complete network amounts to set  = 0 (assuming all the links are already
there amounts to setting a uniform zero cost for building any link, with the consequence that any link
needed to be built to realise an idea of trade will indeed be built). Hence  =  and so  ≤  for any
period of the simulation. Using the binomial formula, we see that the previous expression for the profits
collapses into:

() = ( − 
 ) + (1− )( − 

)− 


Subtracting the profits of the previous network shows that the benefits of joining the network can be
expressed as:

( − 
 ) + (1− ){( − 

)−
P
=1
( − ){

P
=1

(−1)−1
(− 1)

µ
min(− 1 )



¶

+1(≤)

P
=1

µ −1
(− 1)

¶−1µ
min(− 1 )

 − 1

¶
}}

−(1− )
P
=1
1(≤)(1−

−1P
=1

(−1)−1
(− 1)

µ
min(− 1 )



¶
) +  − 



6.3 Annex 3: the case of cost-recovery from network usage solely

Assumes the complete network cost-recovery is done entirely through transactions fees, and entails no
fixed costs. That is, in Section 3.3 we have  = 0 and 

 = 
 (0) is dependent of the trade volume

(which is directly linked to the number of agents joining the network in our model). Hence  = (0)
and the relation

0 − 0 −   0 ()

becomes
0(0)−   0
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The previous aggregate costs  to recover is thus included in each transaction realised in the new
network and depends thus of the size 0 of the new complete network. More precisely:


  = 

 (0) =



¡2

0

2

¢ + 
 

Indeed, the ratio
20
2 is nothing else than the expected portion of trade being settled entirely in the network

(this is the probability, in our model, of an idea of the trade of type  with both  and  agents having

joined the network to be selected at a given period; since we run the model on  periods 
¡20
2

¢
is thus

the expected number of transactions settled in the network). Now it can easily be checked that replacing

  by this expression in 0(0)−   0 gives exactly the condition (), and thus the same values
for 

 . This does not need to be the case in general, when some agents settle more trades than others
on average.

6.4 Annex 4: An informal discussion concerning the dynamics implied by
the one-stage game

In what follows we give a glimpse of the adjustment process as implied by the dynamic, myopic best-
response version of our previous game. Such a game is defined by playing the previous game repeatedly
a certain number of times, where each agent plays its best-response, given its belief 0 about the number
of agents joining. Consider the case described in Figure 4 and assume the agents, because of imperfect
information, had formed the common belief that 0 = 1. For example, agent  thought agent  would
join, while agents  and  thought agents  would join. Acting on this belief leads agent  to join while
agents  and  stay out. Hence an equilibrium is of the static one-period game (hence of the repeated
game) is immediately reached with 0 = 1. The dynamic game is then very similar to the static one,
player  belief was wrong but with no detrimental consequences for any player. The Nash equilibrium
reached is sub-optimal as it is Pareto-dominated by the equilibrium where all the three players join. But a
distinct possibility for the second round of this game is that agent  and  both adjust their believes and
expect the other to enter the network, which prompt the two of them to do so (self-fulfilling prohphecy).
Without these strong believes there would be a coordination problem among agents there, because agent
 needs to be sure agent  will enter to make the complete network solution competitive, and vice-versa.
Furthermore, what would happen if 

 was not between 0 and 1 but between 1 and 2? After its first
period move agent  would have been better not joining the new network, while in the second step agent
 and  would need the insurance that agent  will not leave the network, on top of coordinating their
moves, to make their decision to enter profitable. Reaching the Pareto efficient Nash equilibrium on the
second period of the game now requires both the commitment of agent  to stay in the network and the
joint coordination of agent  and  to enter.

Remark: One needs to modify the rules of the iterated game to model better the decision to leave. A
realistic modification could be that a given agent  adaptation costs  when the agent first enter in the
network, since these adaptation costs should be seen as an upfront payment paid only once and not as a
on-going fee. Hence, a agent having made the wrong decision and paid the adaptation costs once would
be more reluctant to leave the network after that and the network naturally becomes more attractive to
it in the second period. For example in the case described by Figure 8 , where at the first step agent
 joined the new network while agent  did not, it will become more probable that in the next period
agent  will stay and agent  will join (hence making 0 to go to 2  

 ), rather than agent A would
leave.

To illustrate further the possible need for coordination among agents as well as greater transparency
concerning agents intentions (and adaptation costs), we consider three different cases: all three cases
starts with a pessimistic belief about the number of agents joining in the first wave: 0 = 1. The first
case evolves naturally, without the need for synchronisation between agents, towards the socially optimal
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Figure 8: Agent B would be more willing to join than agent A to leave.

Nash equilibrium. The second case illustrates a coordination problem and the last the situation where a
complete network cannot and should not be reached, since it is not a optimal solution.

Consider the case illustrated by Figure 9, with common initial belief 0 = 1, and where  and  have
entered. One might ask how in real life a common belief could be formed while some agents ignored others
would enter: consider for example the simple case where  was not aware of  entrance and vice-versa,
and where other market participants thought only  would join and not  (for example  had given
wrong signals concerning its adaptation costs , indicating a higher  than the real one). At the next
step 0 ≥ 2 and agent  would join. Then at the next period 0 = 3 and  will join. The process goes
on until all agents belong to the complete network. No coordination was needed to reach this efficient
equilibrium where all agents have joined.
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Figure 9: Case without any synchronization problem in the dynamic game.

Now alter the repartiton of the quantities 
 , 


 ... such that we are in the situation depicted in

Figure 10 below, with agent  and  having joined:
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Figure 10: Situation requiring coordination from a subset of agents.

The beginning of the dynamics are the same: agent  joins and 0 = 3. Now we have a synchronisation
problem: indeed coordination would be needed between agent  and  to make it advantageous for them
to join: because of their relatively high adaptation costs they need to bring both their volumes to make it
more profitable for them to join than opt out. Moreover, so long that these agents have not solved their
coordination problem and joined, there is little hope for agents  or , which have higher adaptation
costs, to join. Hence, a coordination problem among a strict subset of agents could put in jeopardy the
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evolution of the whole process towards the socially efficient Nash equilibrium, which is the equilibrium
where all agents have joined.

Last, but not least, some subset of agents might have adaptation costs so high that there will not
be a NE where all agents join. In Figure 11 below, the equilibrium resulting from the same set of initial
assumptions is the one where only agents , , and  joined, while agent  and  stay outside the
network:
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Figure 11: Situation where all agents joining would not result in a Nash equilibrium.

Without other agents in the market than the five agents represented here, and with no growth of their
volumes, it is not profitable for agents  and  to join at any period. Note this model does not take into
account the dynamic effects of the network on volume growth, nor the potential of new entrants. Now
suppose there is another agent  , with 

 = 
 for example. Because its adaptation costs are too high

for him to join (that is, 4  
 ), it opts to stay out. Assume furthermore than the other agents believe

(falsely) that it will join. Then they may want to synchronise their own entrance in the network to join.
In such a case in the next period both agent  and  will have joined, contrary to agent  - whose only
appearance made them join in the first place. Because of the additional volume now brought by the two
recently joining agents, it is now more advantageous for agent  to join This illustrate how the simple
participation of more agents in the network-related discussions could actually prompt other agents to
join (on false believes) and allow to reach a better Nash equilibrium. Also note, in the three cases, the
tendency of the process to drift to the right, that is, towards a bigger volume being dealt through the
network, because adaptation-costs are seen as an upfront payment that can hardly be taken back once
paid (see previous Remark).

6.5 Annex 5: proofs of various graph theoretic theorems

Proposition 15 If   −
2 then any stable network is strongly connected and its diameter satisfies

∆ ≤ min(0 − 1
+
2
+

+
2
−
).

Proof. We first prove that any stable network is strongly connected, and then derives the upper-
bound for its diameter. Let  be a stable network and suppose it is not strongly connected. Let  and
 be two nodes such that there exists no path going from  to . Building the edge () would incur
a cost of  to node  but an additional profit of at least −

2 . Indeed, the trade with  itself already

provides  with a profit of −
2 , to which may be added other intermediation fees from the possible

admissible paths using the newly created edge (). Since   −
2 the node  would be willing to

build (). This contradicts the stability of the network .
Consider a minimum path  of length ∆,  = 0, 1, 2, ..., ∆ and assume ∆ ≥ 2 (the case where

∆ ≤ 1 can be readily checked since for network with at least two nodes,   −
2 implies ∆ = 1 and

+
2
+

+
2
−

 1 since   0, while by assumption 0 ≥ 2.) Hence by minimality of  , 0∆ is not an edge.
Since   −

2 , 0 would certainly be willing to pay for creating an edge towards ∆ if it could not
use the minimum path 0 = , 1, 2,..., ∆ for carrying out trades with ∆, in which case we would
have a contradiction with the minimality of  . Stability thus implies that this path can be used, hence
that its length ∆ is at most 0 − 1. Also, stability requires that the benefits derived by 0 from trading
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with ∆ by using this minimum path is no less than the benefits it would get if it chose to establish a

direct link with ∆, idem est that −∆
∆+1 ≥

−
2 − , which provides the condition ∆ ≤

+
2
+

+
2
− . Hence

∆ ≤ min(0 − 1
+
2
+

+
2
−
).

Notice in passing that another (weaker) necessary condition for the minimum path to be able to carry
out trade is that  − ∆  0 ie ∆ ≤ . Hence the above results also contains the somehow simpler
condition that ∆ ≤ .

Proposition 21 If   −
2 +2(− 2) −23 1(02) + (− 2)(− 3)−34 1(03) =: 0, then the empty

network is the only strict stable network (and the only strict Nash equilibrium).
Proof. Suppose  ≤ 2. Without loss of generality 0 ≤ 2 and the assumption becomes that  ≥ −

2 .

This implies that the direct gains for  from establishing a link towards  are −
2 −   0. Hence no

node  will ever choose to maintain a link. This results in a empty network.
Suppose   2 and that   0. It is enough to show that 0 is the maximal additional profit a node

 can hope for by establishing a link. Since the costs  are superior to 0 it will then follow that no
node  will ever want to maintain a link, and that the empty network is the only NE for such parameter
constellations. To show that 0 is an upper bound for the additional profits derived by establishing a
single edge , we start from any graph  and prove by successive reductions than the additional profit
a node  can derive by establishing an edge  cannot be more than the additional profit node  would
derive from edge  in a particular graph 0, whose structure is known and in which  derives from
 an additional profit of precisely 0.
Additional profits for  derived from establishing a new edge  stems from:
- the direct trade with , which amounts to at most −

2 — this upper-bound corresponding to the
case where there were no admissible path going from  to  prior to the establishment of the link ()
- the profits from trades involving more than two intermediaries and using a chain  of intermediaries

which finishes with the edge . Assume such chain contains more than three intermediaries, and let
 =: . Then  derives less profits in such a graph from trades  than it would if  was a
in-neighbours of , the reason being it has to share the profits from trade  with more intermediaries
(for example, with ). Hence  obtains no less profits in the graph 0 obtained from  by adding all
edges pointing towards  than in  itself. These profits amounts to (− 2) −23 in 0.
- the profits from trades involving more than two intermediaries and using a chain  of intermediaries

which starts with the edge . Similarly,  obtains no less profits in the graph 00 obtained from 0 by
adding all edges starting from the node  than in 0. These profits amounts to (− 2)−23 in 00.
- the profits from trades involving more than three intermediaries and using a chain  of intermediaries

in which both  and  are strict intermediaries. Note these profits can only be positive if 0  3. Also,
these profits are maximal when no node in  ()\{} is linked to another node of  ()\{}.
Indeed, in such a configuration any node in  ()\{} has to use the node  to carry out a trade
with another node from  ()\{}. Hence,  obtains no less profits in the graph 0 obtained from
00 by deleting all edges between two nodes in  ()\{} than in 00. These profits amounts to
(− 2)(− 3)−34 1(03) in 0.

It results from the above that−
2 + 2(− 2) −23 + (− 2)(− 3)−34 1(03) is the additional profit

derived by node  by establishing the link  in the graph 0, and that it is an upper-bound for the
additional profit derived by node  by establishing the link  in the initial graph . Since this holds
for all , we have a general upper-bound.

Proposition 24: Assume   2. Then stable complete stars are also Nash equilibria.
Proof. Let  be a complete stable star.
By symmetry of the network, the center’s payoff depends uniquely on the number of links it creates

towards the other nodes. Assume it creates  links, and let  be its payoff. Then

() = {−}+ {

µ
 − 

2

¶
+ (− 1)

µ
 − 

2

¶
}+ {( − 1)

µ
 − 2
3

¶
+ (− 1− )

µ
 − 2
3

¶
}
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Indeed, the first term between brackets is the costs of creating the links, the second term between brackets
the profits from direct transactions and the third term between brackets the profits from intermediation.
() can be rewritten as:

() = (− +

µ
 − 

2

¶
+ (− 2)

µ
 − 2
3

¶
) + (− 1)

µ
 − 

2

¶

Since −+ −
2 +(−2)

¡
−2
3

¢
≥ 0 the maximum is obtained for the maximum value of , that is, − 1,

which means creating all possible links. Note that, in the above reasoning, instead of computing the
total profits, we could have only computed the additional profits obtained by establishing  links, that
is. (−+ −

2 +(−2)
¡
−2
3

¢
). Because −+ −

2 +(−2)
¡
−2
3

¢
≥ 0 the maximum is obtained for the

maximum value of , which is − 1, and we conclude similarly. This approach being somehow simpler,
we proceed in this fashion for the leaves, computing the additional benefits of having a given number of
links in each case.
For computing one of the leaf ’s best-response we will distinguish two cases:
In the first case the leaf  plays a strategy where it builds a link towards the center and  other

links, for  ∈ {0 1   − 2}. Its additional profits from building  edges towards other leaves is:
(− + −

2 − −2
3 ). Because +

6 −  ≤ 0, the maximum is obtained for  = 0, which means building
no link except towards the center.
In the second case it does not link to the center but to  other links, for  ∈ {0 1  − 2}. If  ≥ 1

then the additional profit obtained by  if it severs all existing links and connects to the center instead is:
(−1)−(−1) −2 +(−1)

−2
3 +(−2−)(−23 −−3

4 1(03)). Indeed, the first term represents the costs
saved from having to pay only for a single link instead of  links, the second the loss of profits from direct
trades towards other nodes, the third the compensating gains from indirect trade steping up to replace
the previously direct trades, and the last term the gains in what was before, and still is, indirect trade
(1(03) is 1 if 0  3 and 0 otherwise). This amounts to (−1)(− +

6 )+(−2−)( −23 − −3
4 1(03)),

a non-negative quantity since  − +
6 ≥ 0 and −2

3 − −3
4 1(03)  0. Hence strategies sending edges

towards leaves and not towards the center are dominated by the strategy of just linking to the center.
The only check left is the suboptimality of not building any edge. Building a single edge towards the

center would bring an additional profit of − + −
2 + ( − 2)

¡
−2
3

¢
≥ 0, where −

2 stems from direct

trade of the leaf  with the center and (− 2)
¡
−2
3

¢
from indirect trades starting at . This concludes

the proof.

Proposition 28:Assume   2 Then a -regular network is stable if, and only if,

2

µ
 − 2
3

¶
+

µ
 + 

6

¶
≤  ≤  − 

2
+ 2

µ
 − 2
3

¶

The proof of Proposition 28 relies both on Theorem 27 and on the following Lemma:

Lemma 35 Suppose   2. Suppose +() ∩ −() 6= ∅. Then node  earns, by creating the link
(), an additional profit of

(|−()|− |−() ∩−()|+ |+()|− |+() ∩+()|)

µ
 − 2
3

¶
+

 + 

6
− 

Proof. The additional profits of creating such a link are (see Figure 12):
1) those derived from intermediating transactions using chains of type  where  is any node in

−() but not in −(): (|−()|− |−() ∩−()|)
¡
−2
3

¢
,

2) those derived from intermediating transactions using chains of type  where  is any node in
+() but not in +(): (|+()|− |+() ∩−()|)

¡
−2
3

¢
,

3) the additional profit −
2 − −2

3 = +
6 of carrying out directly trades () instead of using one

strict intermediary.
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Figure 12: Illustration of the different chains of intermediaries alluded to in the proof

The costs are . The result follows.

We can now proceed to prove that the condition of Proposition 28 is necessary and sufficient:

Suficiency: Suppose () is not an edge. Since  is a uninetwork we thus have a node  such that
the path  allows to settle trades of type (), and  ∈ +() ∩ −() 6= ∅. We have, since
|−()| =  = |+()|:

(− |−() ∩−()|+ − |+() ∩+()|)

µ
 − 2
3

¶
+

 + 

6
≤
µ
 − 2
3

¶
(2) +

µ
 + 

6

¶
≤ 

Hence by Lemma 35 node  does not want to create this edge.
Suppose () is an edge. Deleting it would incur a gain of precisely  − −

2 − 
¡
−2
3

¢
≤ 0, since

there is no other path than () that can be used by  to trade with  nor other path than 
which can be used to trade with  for any  ∈ +(). Hence  would be worse off deleting ().
Hence the condition is sufficient.

Necessity: The most important part of the proof is indeed to establish the necessity of the condition,
as it will allow us to conclude the network we are looking for does not exist. Indeed, for such a network
to be stable it is necessary that no node  wants to create a link towards  for any  ∈ (). Let
 ∈  (). Let 0 be the unique node of  which is both an in-neighboor and an out-neighboor of . The
existence and unicity of 0 is assured by Theorem 27 and the definition of a line network of a complete
network (Definition 26). Since  ≥ 2 there exists  in −()\{0}. Hence  ∈ ().
Suppose −()∩−() 6= ∅. Then there exists  in −()∩−() and  and  are two distinct

paths going from  to , a contradiction with the definition of uninetwork. Hence −()∩−() = ∅.
Similarly, we can show that +() ∩ +() = ∅. Since we suppose that the network  is stable, and
that  ∈ (), node  should not want to create an edge towards . Applying then Lemma 35 to the
pair ( ) yields the condition 2

¡
−2
3

¢
+
¡
+
6

¢
≤ .

For the other part of the inequality, notice again that if () is an edge in the network, deleting it
would incur a gain of precisely  − −

2 − 2
¡
−2
3

¢
, since there is no other path than () that can

be used by  to trade with  nor other path than  which can be used to trade with  for any
 ∈ +(), nor other path than  which can be used by  ∈ −() to trade with . Assuming this
quantity to be nonpositive is thus necessary. This concludes the proof of the necessity of the condition.

Theorem 31: Assume   2 and   +
6 . Let  be a strict Nash equilibrium. Then there is a

threshold 0 ≤ 3
−2 ( −

+
6 ) + 1 such that, if  has a partition {  ∈ } of complete stars, where 
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denotes the center of star , and such that, for all  ∈ , we have:

|(+() ∩ )\
[

∈
+()|  0 ()

then  is a multistar with partition {  ∈ } of complete stars.
Proof. Let S := +()\

S
∈

+() be the set of vertices of  that can only be reached through

.
Let  ∈ . Let  ∈  ()\{}.
a) Assume first that  ∈ S . If  did not had a link towards  , then creating it would provide  with

an additional profit of at least

− +
 − 

2
−  − 2

3
+ |S |

µ
 − 2
3

¶

Indeed,  is the cost of establishing a new link towards  ,
−
2 − −2

3 = +
6 is a lower bound for

the additional gains from direct trade with  and the last term represents the additional gains from
intermediating trade with the |S | nodes that can only be accessed only through  . It is thus a lower
bound for the additional (strict) intermediation profits.
b) If  ∈ S then the additional profit of creating a link to  will be at least

− +
 − 

2
−  − 2

3
+ (|S |− 1)

µ
 − 2
3

¶

This lower bound is lower than in a) because  does not trade with itself in the model. This last lower
bound, and hence both lower bounds, are positive as soon as |S| 

3
−2(−

+
6 )+1 =: 0 which is the

case by assumption. This contradicts the stability of a Nash equilibrium. Hence every  ∈  ()\{}
has a link to the center  of  , and this result holds for all  ∈ .
c) Let  ∈  ()\{  ∈ }. Let  be the number of links that  built towards  (). By the above,

we already know that  is linked to  ∈ , hence  ≥ 1. Assume by contradiction that   1 for at
least one  ∈ . Then

P
∈

 − ||  0. We can write the additional profit of node  derived by these

extra-edges as a function of the :

−(
X

∈
 − ||) + (

X

∈
 − ||)(

 − 

2
−  − 2

3
) = (

X

∈
 − ||)(− +

 + 

6
)

which is strictly negative since
P
∈

 − ||  0 and −+ +
6  0, a contradiction with  NE. Hence

 = 1 for all  ∈  and  sends only a single link towards each star , which is directed towards the
center  of .
d) Let now 0 ∈  and consider 0 . The same argument as in (c), where for  ∈ \{0} we define 

to be the number of links that 0 built towards  (), can be used by considering
P

∈\{0}
 instead of

P
∈

, and \{0} instead of . This concludes the proof.

Conversely, it can be checked that this unique possible structure is indeed a NE when we had the now
well-known necessary condition that  ≤ −

2 + (− 2)−23 , together with a sufficiently high degree for
each center of the stars.
Proposition 32: Let  be a multistar with partition {  ∈ } of complete stars . Assume

moreover than +() − ||+ 1  0 for all  ∈ , and that +
6    −

2 + (− 2)−23 . Then  is a
strict Nash equilibrium.
Proof. The condition +() − (||− 1)  0 is precisely the condition () of the previous theorem

once the overall structure has been deduced. The same arguments thus allow to prove that, given the
other nodes strategies, each node strategy is a best-response among the strategies where the centers of
the stars do maintain the links towards their leaves. More precisely, the additional benefit of the center
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Figure 13: Illustration of the proof

 of forming  links towards its +() − (|| − 1) leaves is, assuming other nodes do not deviate from
the strategy profile:

(− +
 − 

2
) + (( − 1) + (− 1− ))

 − 2
3

Indeed, − is the cost of maintaining these links, −
2  the additional profit from direct trade, ( −

1) −23 the intermediation profits from being the strict intermediary of trade between vertices both in

+() ∩  and ( − 1 − ) −23 the intermediation profits from nodes outside  towards nodes in
+() ∩ . This amounts to

(− +
 − 

2
+ (− 2) − 2

3
)

This additional benefit is increasing with the number of links created towards the leaves if, and only if,
  −

2 + ( − 2) −23 . By assumptions this condition is satisfied. Hence each center maintains a link
towards each of its leaves at equilibrium.
Creating links towards leaves of other stars would result in a additional profit of − + +

6  0 for
the center . Hence no center will maintain such links at equilibrium.
Any vertex (center or leaf) not in S linking towards the center  of another star  will benefit from

an additional profit of at least

− +
 − 

2
−  − 2

3
+ |S |

µ
 − 2
3

¶

while any vertex in S := +()\
S

∈
+() linking towards the center  of star  will benefit from

an additional profit of at least

− +
 − 

2
−  − 2

3
+ (|S |− 1)

µ
 − 2
3

¶

The definition of 0 insures doing so brings additional benefits.
We are only left with checking that linking directly to another leaf is not beneficial for a leaf, which

is true since − + +
6  0. We can thus conclude that the network  is a NE.

Theorem 36 Assume   2 and   +
6 . Let  be a strict Nash equilibrium. Then there is a threshold

0 ≤ 12
+(−

+
6 ) + 1 such that, if  has a partition {  ∈ } of complete stars, where  denotes the

center of star , and such that, for all  ∈ , we have:

|(+() ∩ )\
[

∈
+()|  0 ()
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then  is the unique network such that 1) it contains the {  ∈ } as subnetworks, and 2) each of the
node  ∈ {  ∈ } is linked to precisely all the {  ∈ }. 3) Each center  is linked to precisely all
the nodes in  ∪ {   ∈ \{}}.

Proof. The proof is similar to the one of Theorem 31, and thus omitted there.

Remark 37 We suspect the bound  of Theorem 31 and Theorem 36 not to be optimal, since it is
increasing with , which is contrary to the intuition that higher costs of building edges would make
intermediation through an oligopolistic more profitable. Hence, there may be a better bound than the one
given by the above theorem.

Remark 38 In case 3   which is the least to assume in the 4 intermediaries case, the upper bound
for 0 is lower (thus better) in Theorem 31 than in Theorem 36

Theorem 33: Let ( ) = 54− 1− (− 2) . Let  be the closest positive number to ( ).
Then among all the multistars, the ones with presicely  centers are the most efficient networks.
Proof. First notice that since all the latent profits are realised, aggregate efficiency ranking can be

obtained by simply inverting the ranking of the costs of the links: the parameter  will thus drop from
all the conditions derived here.
Simple combinatorics arguments allow to show that the number of edges in a multistar whose set of

centers is  is simply + || (− 2). Each of this edge cost  to build.
In a multistar there are (− ||) ||+ (− ||) + || (||− 1) = || (− 2) +  direct trades. This is

because there are (− ||) || direct trades from a leave to a center, (− ||) direct trades from a center
to a leaf (as there is a unique edge from  to any if the  − || leave, and || (|| − 1) edges linking the
different centers of the multistar. Each of the direct trade is realised at a cost .
In a multistar there are (− ||)(− ||− 1) indirect trades, which follow routes of length 2. This is

because each leaf indireclty trade with each other leaf of the multistar. Each of the indirect trade costs
2.
Hence the total costs associated to a multistar with set of centers  is:

(+ || (− 2)) + (|| (− 2) + )+ (− ||)(− ||− 1)2

Define () = (+ (− 2)) + ((− 2) + )+ (− )(− − 1)2.  is a polynomial of degree 2
whose minimum is attained in (), hence the result.

Theorem 39 Assume   . Let  be a multistar with partition {  ∈ } of complete stars  of
center  and let  be such that  = max(  ∈ ). Then a star with the same number of vertices as the
multistar  Pareto-dominates  as soon as

6( − − )(||+  − 2) + 3( − )(− ||−  − 1) + 2( − 2){−2(− 2) + ( − 1)(2−  − − 1} for all  6= 

( − 1)(− )( − 2)  3(

Proof. Leaves are better off in a star than in a multistar since in a multistar each leaf does ||−1more
direct trades than in a star which save the transaction costs of (|| − 1) but building those additional
links are paid by the leaves concerned hence a cost of (|| − 1). There is this a net additional cost of
( − )(||− 1)  0 in a multistar compared to the star for the same profits being realised.
The center of a star is better than one of the center of the multistar  if, and only if, ( − 1)( −

)( − 2)3  (−  − + 2). Indeed using simple combinatoric argumentswe see that the center of
the multistar, compared to the center of a star, (a) misses (− 1)(− ) paths of length 2 which realise
profits from one leaf of their star  to leaves not in ; (b) it builds (− ( − 1)− (||− 1)) less edges
than the center of a star hence a saving of (−  −  + 2). Writing that profit losses are higher than
cost cutting benefits is equivalent to the second condition.
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The profit of a center of a star  is the sum of the cost of its ||+ ||−2 edges: −(||+ ||−2), the
profits from direct trades to and from the ||−1 other centers and its ||−1 leaves: 2(||+||−2) −

2 , the

direct profit from trades from leaves outside : (−||−||+1) −
2 , and the indirect profits. The indirect

profits can be further decomposed into: the indirect profits from intra- trades: (||− 1)(||− 2) −23 ,
from trades from outside  to a leaf in : ( − ||)(|| − 1), from trades from a leaf in  to a node
outside: (||− 1)(− ||− ||+ 1). This results in an overall profit of

(−−)(||+||−2)+
 − 

2
(−||− ||+1)+

 − 2
3

((||−1)(||−2)+(||−1)(2−2||− ||+1)

Writing that those profits are lower than those of the leaf of star is equivalent to the first condition.
Under the first condition for all  6=  we have that all the centers of a multistar with the possible

exception of the center eaning the most profits earns less profits in a multistar than the leaves of a simple
star. Under the second condition we have that the center of the star earns more than the center eaning
the most profits in the multistar. Since the leaves are better off in a star than being leafs in a multistar
anyway, any relabelling of the centers of one of the center of the multistar which earns the most into the
center of the star, and of the other centers into the name of simple leaves of the star, will do.

Remark 40 The profit of a leaf  of the multistar  in  is −|| + −
2 || + 2

−2
3 ( − || − 1) +

−
2 + −2

3 (|| − 1). Indeed, −|| is the cost of the leaf  to maintain a link towards each of the

centers, −
2 || the benefits from direct trade towards those centers, 2−23 ( − || − 1) the benefits of

trading to and from the  − || − 1 other leaves of the multistar, −
2 the benefits from direct trade

from  and
−2
3 (|| − 1) for indirect trades from the  with  6=  to . This can be rewritten as

||(− + −
2 − −2

3 ) + −
2 + (2− 3) −23  Since − + −

2 − −2
3 = − + +

6  0, the lower ||, the
higher the profits for the leaf . Economically, this expresses its preferences to only have to pay for one
single link to get access to the whole network, in contrast to having to establish a link towards each center
of a multistar. Note that, of course, by plugging || = 1 we find again the profit of a star of size .
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Article 5: Models of default rates: current models review and an alternative approach
using Hidden Markov Chains

1 Motivation of the present paper

1.1 Credit claims in the European context

The Eurosystem is currently accepting both individual credit claims and pools of credit claims as collateral
for its monetary operations. Individual credit claims have always been accepted in the general collateral
framework. In December 2011, the Governing Council decided to allow National Central Banks (NCBs) to
temporarily extend eligibility to other performing credit claims based on NCB-specific eligibility and risk
control frameworks, albeit on a non-loss-sharing basis. These credit claims eligible on the basis of such
specific frameworks are referred to as the Additional Credit Claims (ACC). They can be individual credit
claims or whole pools of credit claims. The Governing Council approved ACC frameworks, including
their associated haircuts. Hence, the three main features of ACC frameworks are that (1) they operate
under a non-risk sharing regime, meaning that the potential losses in a given ACC framework will solely
be borne by its NCB, (2) they were conceived as a temporary measure to expand collateral availability
in the Eurosystem, and (3) entire pools of credit claims can be pledged. These pools can contain credit
claims with a higher probability of default than the individual credit claims which are eligible as collateral
through the general collateral framework. This is because diversification effects are taken into account at
the pool level through the use of a model for default rates in pools of assets1 .

These NCB-specific frameworks are still subject to minimum risk-control requirements, in the sense
that the Governing Council has set minimum eligibility criteria for credit claims to be accepted.

As of 29 May 2013, the resulting aggregate value of credit claims after haircuts pledged to the Eu-
rosystem (both through the general framework and through the ACC frameworks) was 454 billion. This
compares to 330 billion for ABSs, for example, and represents about 15% of the total amount of liquid-
ity provided to the Eurosystem. Hence, the volumes are large, which increases the associated risks (in
amount terms).

1.2 Scope of the paper

The present paper is targeting both the broad audience, which will gain a valuable, self-contained knowl-
edge of the models described, and the more specialist audience, which will find many relevant details about
specific models. The paper focuses on the modelling of defaults. This can serve a variety of purposes
such as assessing quantitatively the credit risk associated to the collateral pledged to the Eurosystem
by its counterparties. As such, it does not try to take into account other model features that would be
necessary for the pricing of loans. As a consequence, it does not need to investigate the behaviour of
recovery rates, or the additional subordination structures for creditor claims2 , or the waterfall structure
for ABSs. All these layers can easily be added later, depending of the purpose of the model being built.
The paper mentions some of them, when deemed relevant, but only to the extent where these concepts

1Nevertheless the maximum probability of default for any individual credit claim to be eligible for ACC was set to 1.5%
by the Governing Council.

2Only un-subordinated (i.e. senior) credit claims, as accepted in the general collateral framework or in the ACC
frameworks, will be considered. Also, it is assumed all obligators are distinct. Hence, in the case different loans of a
pool have been granted to the same obligator, the models developed here should be applied to a synthetic loan portfolio
obtained from the real portfolio by regrouping all loans granted to the same obligator in a single loan.
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can be directly linked to the default rate modelling (for example, when time of prepayment can be made
an inversely correlated quantity to the default time as in [29]).

The default rates models detailed in this paper are not specific to credit claims, and could as well
be applied for corporate bonds. Nevertheless at the current juncture they are particularly wanted for
credit claims, for the reasons detailed in the previous section. Models for both pools of credit claims and
individual credit claims — still distinguishing by sector and country — are described and compared in the
paper.

The contributions of this graduate project paper are twofold. First, it reviews the main default rate
models used in the Eurosystem, as well as the links between them, using homogeneous notations for their
mathematical descriptions. This allows a unified presentation of most of the credit models widely used.
By emphasising each model assumptions and limitations, the paper aims at providing the reader with a
better understanding of each model relevance. It also explain the links between these models. Second,
it introduces the use of hidden Markov chain models (HMM) to estimate the probability of defaults and
the credit cycle of credit claims in the European context. A Matlab library has been developed and
documented for that purpose, and is available from the author on demand. HMM allows to estimate
numerical probability of defaults for a given type of credit claims (for example, Spanish loans to medium
enterprises).

1.3 Detailed outline of the structure of the paper

The first part of the paper describes, inter alia, the structural Vasicek one-factor model used in the
Capital Requirement Directive of Basel II. Other widely used models, such as the statistical (Gaussian)
co-dependency model, will be described in this first section. It will also describe a generalisation of the
Gaussian co-dependency approach for modelling default rates [1], which allow to induce inverse correlation
between default rates and prepayment rates through Monte-Carlo simulations, a very appreciated feature
in, for example, the pricing of asset backed-securities (ABSs).

Each model is described in a way to provide the general reader with the main intuition behind it, such
as the model underlying assumptions and shortcomings, while allowing the more specialist audience to
understand the technical details involved. More generally, the present paper provides the general reader
with a unified description, both in terms of terminology and in terms of mathematical notation, of the
main core models of credit risk, and thoroughly explains the links between the models. To improve the
clarity of the paper, all mathematical derivations are placed in Annex. These derivations follow the order
of the paper, and should be considered as part of it.

It is shown how all the models described in this first section (the Vasicek, the Gaussian-copula and its
generalisation [1]), ultimately result in a common risk factor impacting simultaneously all the loans of the
pool involved. Hence, the question of knowing what really constitutes this risk factor arises. Specifying
explicitly this risk factor by using a proxy variable, or by assuming a theoretical distribution for it, or
even by inferring it from asset prices, implies model risks. Indeed the proxy arbitrarily chosen may be
inappropriate.

In the second part of the paper we propose a different type of model which does not make any
assumption about the risk factor but derives it only from the default data. This model is based on the
theory of Hidden Markov chains, and has been successfully used in the context of US corporate bonds
default data [14]. It is not specific to this asset class, but corporate bonds were probably used because of
the easiest availability of default data. The hidden Markov model approach provides a current estimate
of the credit risk cycle (low or high) together with the probability of defaults in each of the period of the
cycle. Interestingly, the European Data Warehouse has been operational since January 2013, and will be
collecting loan-level data on all ABSs pledged to the Eurosystem, as loan-level data has been made an
eligibility criteria for ABSs. This data will allow, once it covers enough observations in a steady state
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of the economy and in a high default-risk state, to estimate directly the probability of default of a given
sector/jurisdiction as well as the past credit cycle of the sector, which can be quite distinct from the
business cycle. Because the implementation part is far from trivial, having available in a whole Matlab
library for this purpose, properly documented, is a valuable asset. In the short-term, these algorithms
will already be used for assets for which data exists such as corporate bonds. It is also used on a synthetic
index built on the delinquency data obtained from Bloomberg.

2 Notation and preliminaries

This short section details preliminaries in terms of notations, basic probability facts, commonly used risk-
measures, and discuss the concept of portfolio granularity. It is mainly needed for the first section of the
paper, which gives a broad overview of the current use of default models. It is also useful as introductory
reading for the literature of default model in general. The reader interested only in the Hidden Markov
Chains model could skip this preliminary section and go directly to its relevant section.

2.1 Random variables for modelling default

2.1.1 General preliminaries

For any random vector  = (1 ) we denote by  its (multivariate) cumulative distribution
function (cdf), that is,

() =  (1 ≤ 1  ≤ )

for every real vector  = (1  ).
If  is a multivariate cdf we often denote by  its th marginal. We denote by Φ the cdf of the

standard normal law, that is, the Gaussian law with mean 0 and variance 1, and by  its density.
We define the inverse of a univariate cdf  by:

−1() = inf{  () ≥ }

In case  is invertible then −1 coincides with the usual definition of the inverse of a bijective function.
For  ∈ [0 1], the quantity −1() is called the -quantile of the distribution. If  is the cdf of a random
variable , −1() is also known as the -quantile of 

For a given asset or loan  and time  denote by  the instantaneous hazard rate of loan  at time
. It is the average probability of default of a loan which has not defaulted until time  over a very short
interval of time [ + ], hence the name "instantaneous". The  can be a deterministic quantity, or
a random variable. Let   be the time of default of loan . The   are modelled as (non-deterministic)
random variables. Let () be the cumulative distribution function of  , that is,

() := () =  (  ≤ )

2.1.2 Intensity models

A so-called intensity model links the cumulative probability of default () to the instantaneous hazard
rate  by:

() :=  (  ≤ ) = 1− exp(−
Z 

0

)

In case  is differentiable, the above formula can be easily proved from the definition of the hazard
rate (Annex 6.1).
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Most of the time, the  are in fact assumed non-stochastic. They are often even assumed constant:
 = 0 =:  for all borrower . In that case the intensity model reduces to:

() =  (  ≤ ) = 1− exp(−)

In practice, intensity model are very useful to transform a single point data  of the (cumulative)
probability of default of debtor  over the time interval [0 e] into a whole term-structure of the cumulative
probability of default → (), which is a function defined on the interval [0  ] and of values in [0 1],
for the chosen horizon  needed in the model, and can be seen as a distribution of the timing of default.
Most of the time  is estimated from market data, using the excess spread on bonds or a Credit Default
Swap (CDS) spread, or it can be taken from the rating agencies tables of probability of default, or inferred
from the commercial bank borrower rating score. Deriving  from  is done by setting the empirical
quantity  equal to the theoretical quantity 1−exp(−e) where e is the time horizon of . For example
the credit rating agencies tables indicate the cumulative probability of default for each rating class with
an horizon of one year, hence e = 1. For example one can look at the most liquid CDS when such
instruments are available for the borrower, and very often these are the three or five year CDS. Hence
e = 3 or 5, depending of the most liquid CDS maturity. Solving for  in:

 = 1− exp(−e)

yields

 = −
ln(1− )

e
Admittedly, other methods exist to derive the curve → (), for example using bonds of different

maturities. In the context of credit claims from small borrowers, this is often not possible, hence a one
point estimate  is used to derive , then the whole curve → () is deduced through the intensity
model.

Two simple mathematical facts are constantly used in the context of default modeling and simulations:

Lemma 1 Let  be a uniformly distributed variable on [0 1]. Let  be the cumulative distribution
function of some random variable . Then −1 () follows the same law than , that is, −1 () =  .

Proof.  (−1 () ≤ ) =  ( ≤ ()) = () for any real  since () ∈ [0 1].

Lemma 2 Let  be a random variable and  its cumulative distribution function. Then () is
uniformly distributed on [0 1].

Proof.  (() ≤ ) =  ( ≤ −1 ()) = (
−1
 ()) =  for all real , by definition of  .

2.2 Commonly used risk-measures

The Value At Risk (VaR) at the  confidence level of a given risky asset (which can be an individual
asset or a portfolio), denoted by VaR(), is the th percentile3 of the risky asset loss distribution :

VaR() = inf{ | ( ≤ ) ≥ } = −1 ()

Intuitively, one could expect that the losses on the asset value would not exceed the VaR() of the asset
more than 1− percent of the time4 , since VaR() is the smallest  such that  (  ) = 1− ( ≤ ) ≤

3When the loss distribution is not continuous, its upper  quantile inf{ | ( ≤ ) ≥ } could be higher than its lower 
quantile inf{ | ( ≤ )  }. We will (arbitrarily) always opt for the upper quantile, which is more conservative as losses
are counted positively ( ≥ 0).

4Note that such frequency interpretation, to be valid, implicitely needs the rather unrealistic assumption that no auto-
correlation exists in the sequence of losses. The correct mathematical interpretation is the probabilistic one.
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1 − . The VaR has remained a widely used measure of risks among portfolio managers; Bassel II also
uses the VaR(0999) for defining its capital requirements. Nevertheless, it has two main drawbacks: it
says nothing about the size or average size of the extreme losses of the th percentile, and it is in general
not subadditive, meaning the value at risk of a portfolio can be more than the sum of the values at risk
of its individual components.

The Expected Shortfall (ES) at the  confidence level is simply the average loss conditional on the
losses being in the worse  quantile5 :

() = ( | ≥ VaR())

Alternatively, it can be proved6 that:

() =
1

1− 

Z 1



VaR()

As an example of its use, the Expected Shortfall at the 99% confidence level is the chosen Eurosystem
tail risk measure. In particular, this is the measure used to calibrate the haircuts on the collateral the
Eurosystem receives from the counterparties participating in refinancing operations. Setting the haircut
equal to the expected shortfall at the 99% confidence level insures that, on average, the Eurosystem
will make a zero loss even if all the losses realisations are drawn from the worse percentile of the tail
distribution of losses.
Contrary to the VaR, it can be proved that the Expected Shortfall is subadditive. By definition, it

also gives a good indication of the size of the average loss in the worse th percentile.
Notice that the VaR and the ES only depend on the loss distribution  of the considered asset, hence

they are sometimes defined in relation to the loss distribution  only, with no mention of the underlying
portfolio.

2.3 Granularity of a portfolio and Herfindahl index

Intuitively, the concept of granularity refers to the extent to which a system can be broken into smaller
parts, or that a larger entity can be subdivided. Granularity is certainly relevant in a risk management
context. If the system is "granular", the aggregate risk of the portfolio depends less on individual, idiosyn-
cratic shocks, as no single loan is given an extreme weight in the overall portfolio risk. Hence, a granular
portfolio risk would be mainly driven by the common factors which affect all the loans simultaneously
than by individual loan characteristics. The Herfindahl index, which we define below, is a measure of
granularity commonly used by market participants.
Let consider a portfolio of  loans and let  be the share of the th loan in the total loan amount at

the current time . The Herfindahl index (at time ) is, by definition:

 erf =
X

=1

2

Notice low values of the index indicate higher granularity7 .

5This is in fact the definition of the Tail Conditional Expectation, to which the Expected Shortfall is equal in case of
a continuous distribution. The interested reader can refer to [20] for the general (and cumbersome) definition of Expected
Shortfall and its comparison to Tail Conditional Expectation. When no distinction needs to be made for the purpose of the
present paper we always present the simplest definition.

6This general fact is admitted here. For a proof the reader can refer to Acerbi and Tasche (2002), "On the cooherence
of expected shortfall" J Bank Fin 26 (7), page 1492.

7The CEPH [?] defines the inverse of the above quantity to be the Herfindahl index. Hence higher Herfindahl index
values, in the context of the CEPH, would mean higher granularity.
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2.4 Definitions of defaults

The notion of default is given very different definitions depending on the overall context, type of asset
and jurisdiction. Even within a given framework, the definition can vary. For example, in the Basel II
framework defaults are usually defined as the event of the borrower being more than 90 days late in a
payment to the creditor, or being unlikely to pay. But in the case of retail (including credit card) and
public sector entities exposures, the 90 days figure can be replaced by figures up to 180 days. National
discretion lists provided by national supervisors indicate the cases where a bank should apply a longer
than 90 days definition for defining the event of default on certain products8 . Rating agencies have a
different approach. Both Standard and Poor’s and Moody’s characterise default as encompassing any
missed or delayed disbursement of interest and/or principal, bankruptcy, and distressed exchange9 . Hence
rating agencies do not allow for a systematic grace period after a missed or delayed payment, contrary
to Basel II and most bank internal default accounting. Instead, they would only report the credit event
as a default if a monetary loss becomes sufficiently probable.
Overall, for Corporates the definitions in use are usually inspired by the rating agencies and thus more

or less consistent, whereas for retail there is a variety of different definitions. A practical consequence
is that it is probably better to use delinquency data than default data for quantitative studies. For
example, the delinquency three months rate is the number of loans which are more than three months
late in repayment of principal or interest, and this gives rise to a more homogeneous statistic across
jurisdictions than defaults10 .

3 Description of default models widely used: Vasicek, Gaussian
copulas and generalisations...

3.1 A structural, single-firm model: the Merton model

3.1.1 Model description [25]

Simply put, Merton model (1974) assumes that a firm will default if, at the time of servicing its debt,
the value of its assets stands below the value of its debt. The Merton model of default is considered to
be the first modern model of default. It originally applies to a single borrower . Still, for consistency of
notations with the next sections, as well as for the extension to multi-borrowers in this section, we will
indicate the index  on each variable involved. Merton model is called a structural model, or asset value
model, because the probability of default  of the borrower  is directly linked to the evolution of
the value of its assets  and of its debt . The model was originally formulated for corporate debt.
The intuition underpinning Merton’s reasonning is the following: at maturity  of the debt, which is
modelled for simplicity as a zero-coupon bond of value , the shareholders of the company can decide
whether or not to honour their obligations by paying back their debt. If the value of the firm is below
the value of the debt  of the company at time  , the shareholders will not repay and let the company
default. Bondholders will be entitled to liquidate the company assets and will share the profits from the
sale, whereas shareholders will make a zero profit. If the value of the firm is above the debt level  of
the company at time  , then the firm will repay. Hence, Merton simple model sees the shareholders as

8See the Basel Committee on Banking Supervision FAQ, http://www.bis.org/bcbs/qis/qis3qa_f.htm.
9As an example, Moody’s definition of default for Corporate includes three types of credit events:
1. A missed or delayed disbursement of interest and/or principal;
2. Bankruptcy, administration, legal receivership, or other legal blocks (possibly by regulators) to the timely payment of

interest and/or principal; or
3. A distressed exchange occurs where: (i) the issuer offers debt holders a new security or package of securities that amount

to a diminished financial obligation (such as preferred or common stock, or debt with a lower coupon or par amount, lower
seniority, or longer maturity); and (ii) the exchange has the effect of allowing the issuer to avoid a bankruptcy or payment
default. See for example "Corporate Default and Recovery Rates", 1920-2008, page 51.
10Homogeneity across jurisdictions is one of the two reasons the CEPH actually uses delinquency data, and not default

data, the other reason being the data quality of the time series itself.
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having a European call option on the firm’s assets with maturity  (the maturity of the debt) and strike
price  (the value of the debt at time  ). The shareholder’s payoff at time  is thus:

max(0  − )

where  is the value of the firm at time  and  the debt level of the firm at time . This allows
Merton to use the framework developped by Black and Scholes for option pricing [5].
It is important to understand Merton’s original idea since it leads to the broader concept of a threshold

 under which default occurs. In the more advanced models which are detailed below, this threshold
will be time varying, the quantity  which is compared to it will not necessarily be a function of the
value of the debtor assets, and defaults will be allowed to occur at any time  instead of just at maturity
of the debt  . Nevertheless, the idea of a threshold to which some creditworthiness index of the firm
compares still forms the basis of most default models.
The value  of the borrower’s assets being not observable

11 , a model for its evolution has to be
assumed. Merton assumes that  follows a Ito stochastic process of the form:

 = + 

This allows Merton to directly use Black and Scholes framework for option pricing, in which the probability
of default is:

 =  (   ) =  (  ) = Φ()

where

 =
ln( )− ln(0)−  +

2
2 



√


and  is a standard normal random variable. The derivation is presented in Annex 6.2. Because default
is triggered in scenarios where the realisation of the variable  falls below the value , the variable
 can be seen as indicating the borrower credit-worthiness: the higher it is, the more credit-worthy the
borrower. For this reason we will from now on call  the credit-worthiness index of loan . Notice Merton
model implies a standard normal distribution for , as indicated above.

3.1.2 Limitations, extensions and current use

In this section we explain the limitations of the Merton model [25], and how they were dealt with by the
financial industry. The proposed extensions to the Merton model pave the way for the joint simulation
of default covered in the next section, such as the Vasicek one-factor model [32].

The main limitations of the simple Merton model are the following:
1) It is a one-period default model, or a static model: although the dynamics of  follows a continuous

time-process on [0  ], default can only occur at time  in the model.
2) The process driving the value  of the firm  is not observable.
3) It is a single-borrower default model.
4) The debt structure assumed for the firm is very simple (a zero coupon bond), and refinancing

conditions are not taken into account in the model.
5) It does not take into account liquidity effects on the default of firms.

Despite these limitations, two widely used model of credit risk, CreditMetricsTM and KMVTM , both
rely on Merton model.
CreditMetricsTM was developped in 1997 by the risk management research division of JP Morgan,

which eventually became the RiskMetricsTM group. The quality of its publicly available methodology

11Even for listed companies, all that can be observed are the stock exchange values. Those are often taken as a proxy for
the value of the firms itself, but this is an approximation.
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description [11], stemming from the philosophy of its authors12 to make the product transparent, con-
tributed to its success and influence in many bank-internal developments of credit risk models. The
CreditMetricsTM approach is used by many central banks [4], either directly using the CreditManager
software, or through in-house systems developed in Matlab or Excel using a similar methodology.
KMV was a small company who specialised in credit and portfolio tools which was acquired by

Moody’s. Most of large banks and insurance companies use at least one of the major KMV products.

The first limitation was addressed as early as 1976 by Black and Cox [6] extension of the model. It
simply consists in assuming that default occurs as soon as the value of the assets falls below the debt
threshold. Hence the time of default   of the th borrower is just   := inf{   }. For that
reason, it is called a first-passage model. Defaults can take place at any time, and using properties of
the brownian motion such as the reflection principle allows to derive a closed analytical formula for the
default probability during any time interval. Nevertheless, this is at the cost of a higher mathematical
complexity. Moreover, it introduces the problem of the predictability of default: because the underlying
asset value process is a continuous process (with no jumps), and that default occurs only when this
process hits the level of the default threshold, default does not come as a surprise, in contrast to what
usually happens in real life. Attempts in the financial literature to tackle the predictability of default in
first-passage models have consisted either of incorporating jumps in the value process , which can thus
unexpectedly fall below the default threshold [17], [34], or by allowing only for imperfect information from
the lender side, who will not know the exact position of process  anymore, and thus can be surprised
by the borrower default [9], [15], [22].

Concerning the second limitation13 , notice that what is really required in the model is an estimation
of the credit-worthiness process . Although this estimation stems from the value of the firm in Merton’s
original model, with underlying dynamics given by the stochastic process  = + ,
other specifications for  can be used. For example, CreditMetrics

TM make the variable  linearly
dependent on a vector of factors , as decribed in Annex 6.3. The parameter  can then be calibrated
based on the empirical probability of default  by noticing that  = Φ() implies  = Φ

−1().
Notice that estimating the  in that way also allows to address the fourth limitation, as the debt level 

completely disappears from the model14 . Nevertheless, this is at the cost of the loss of the dependence
of default on the current debt level that was in the original Merton model. Hence, the influence of the
borrower debt level on its probability to default will only be taken into account insofar his debt level
is already captured through the empirical  (or by the borrower rating used to derive the ).
Similarly, the refinancing conditions are only taken into account in this model insofar they are captured
by 

15 .

Similarly, the third limitation can be addressed within the framework of Merton model by specifying
dependent, inter-related processes  for each borrower . Different default thresholds  can still be
set for each borrower, depending on their credit quality rating, but the dependence introduced between
the dynamics of the credit-worthiness indexes  will induce correlation in the joint modelling of the
borrowers defaults. Hence, Merton model already yields a pool default model when the driving processes

12The authors were Gupton, Finger and Bhatia, although the technical note has been improved, as well as the underlying
methodology, many times since its first issue in 1997.
13Admittedly, when the borrower is a company publicly traded, the Merton model can be calibrated using stock prices

by solving a system of two equations: one is the price of the equity as implied by this model, which considers equity as a
call option, and results from the Black and Scholes formula, and the other stems from an application of Ito’s lemma. In
the context of credit claims such information is not available, and hence not developed further in the present paper. The
interested reader can refer to Hull [21], page 490.
14Admittedly, there had been other attempts to introduce more complex debt structures than a simple zero-coupon bond,

such as Geske multi-coupon debt [13] where the decision to default or not is taken at each coupon payment date. The main
common problem of these models is the calibration. Even if calibration were correct they would be very firm-specific and
unusable in practice from a comprehensive, global risk-management perspective.
15Because most of the time these probability of default estimates are backward-looking (eg realised default frequencies

from rating agencies tables), a change in the access to liquidity of the borrower is thus completely neglected by all the
default models based on Merton’s approach. This model drawback has thus potentially contributed to the mis-pricing of
risk preceding the financial crisis.
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of the borrowers’ asset values are made co-dependent. It is precisely the specification of different, yet
inter-related processes  for each borrower  which opens the door to Vasicek default models for pools of
loans, which is explained in the next section (Section 3.2).

An illustration of the use of the Merton model by CreditMetricsTM is provided in Annex 6.3. The
KMVTM methodology is roughly similar and hence omitted in the present paper. Asset correlations
between the different counterparties are solely captured by the stock price correlations of the respective
composite indices the borrowers are mapped to. Indeed, each borrower, be it listed on a stock exchange or
not, is mapped, depending on both its industry and country, to a different index16 . Notice also correlation
is not estimated directly in the model, but will result from the correlations between the synthetic stock
market indices created for each borrower.

3.2 The Vasicek one-factor model for pools

3.2.1 Model description

The Vasicek one-factor model was one of the first models proposed for modelling defaults in pools of
loans. It was presented by Vasicek in its seminal paper [32] as linked to the Merton [25] structural model.
Nevertheless, as we will see, the asset dynamics can be taken out of the model easily, and realised default
taken as an input. The only assumptions still shared with the Merton model will be the concept of a
threshold under which the loan defaults, on the one hand, and the probability distribution of the variable
involved, on the other hand. We choose to present the shorter version of the Vasicek model, the interested
reader can refer to Annex 6.4 for the link between the Vasicek and the Merton’s structural model.

Vasicek model consists in assuming that each firm  is associated to a variable  indicating its credit-
worthiness and that this variable  can be written as:

 =
√
 + (

p
1− )

where  and the  are mutually independent, identically distributed random variables following a stan-
dard normal law. Note that, by independence, the  are themselves Gaussian, of variance 1 and expected
value 0.
Default of firm  occurs in the time period [0  ] if the realisation of the variable  is below the

Merton’s threshold . The formula giving  in terms of the parameters of the Merton model is given in
Section 3.1.1 and is proved in Annex 6.2. But most of the applications of the Vasicek model do not model
explicitly . Instead, they use the following shortcut: Merton’s relation states that Φ() = . Hence,
if  is an (unconditional) probability of default of loan , then  can be recovered by:  = Φ

−1().
This way of only partially using some underlying structural model results is typical of the field of default
modelling. We will find similar transformations using the inverse quantile function in, for example, the
copula approach (Section 3.3).
Hence, the unconditional probability of default of loan  becomes:

 =  (  ) =  (  Φ−1())

Borrowers do not default independently from one another, as all the  are impacted by the same
common risk factor . From independence of the  and the , it is trivial to see that ( ) = 
for all  6= .

16The index can be a synthetic one made of different existing broad market indexes, depending on the borrower industry
participation and the jurisdiction of the market it operates in. For example, a borrower might be mapped as 80% French
and 20% Germany, and as 70% chemicals and 30% finance, resulting in its reference index being 56% French chemicals,
24% French finance, 14% German chemicals and 6% German finance. See Table 8.8 and 8.9 of [11], p 94-95.
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Assuming a portfolio from which all loans are of equal size and whose number of loans tends to infinity,
and that all loans have the same probability of default  = , Vasicek proves that the distribution
of the pool default ratio is:

 ( ≤ ) = Φ(

√
1− Φ−1()−Φ−1()√


)

The proof is given in Annex 6.5. It relies on the fact that conditional to the realisation of the common
factor, the variables  are independent, and thus the Law of Large Numbers can be applied to find the
limiting distribution.

Vasicek model belongs to the class of so-called one-factor conditionally independent default models,
since, conditional to the realisation of the single common systematic risk factor , all the , and hence
all the defaults, are independent. Not only is this crucial fact used for the derivation of the above formula
giving the distribution of losses of the portfolio, but it allows to easily compute the value at risk and
expected shortfall of the portfolio, through a similar limit argument, as the idiosyncratic components
factor out in the limit.

3.2.2 Calibration and current use

The Vasicek one-factor model is often used in conjunction with Gordy’s framework [16]. This is because
under a certain set of technical conditions, but with very broad assumptions in terms of individual
probability of default, of loss given default and of loan size distribution, Gordy provides a formula for the
portfolio loss distribution, its value at risk as well as its expected shortfall (Annex 6.6). Notice Gordy’s
framework still requires that the Herfindahl index17 of the porfolio tend to 0 when the number of loans
tends to infinity, a condition already mentioned in Vasicek original work [32]. Hence, Gordy’s framework
is very similar to Vasicek’s framework in the sense that the loss distribution is derived asymptotically,
meaning that in practice it only holds for a "very large" number of loans.
The Vasicek model is used to derive the conditional probability of default which is then plugged into

Gordy’s formula. The derivation18 is detailed in Annex 6.6. We describe below one of the most important
application of this composite approach.

Basel II capital requirements computations The very core of the Internal Rating Based (IRB)
approach of Bassel II to obtain the levels of regulatory capital relies on the mixed Vasicek/Gordy frame-
work described above. Basel II requires banks to hold a minimum level of capital, also referred to as
regulatory capital. The more risky a bank’s assets, the higher the value of the regulatory capital it should
hold. Basel II allows banks, subject to a certain number of conditions, to use the IRB approach to derive
their level of capital requirements19 . Basel II20 divides a bank’s assets into five asset classes: corporate,
sovereign, bank, retail and equity21 . It considers each of this asset class as forming a separate portfolio,
and uses the Vasicek/Gordy model to derive the amount of regulatory capital to be held to cover for the
risk of each of these portfolios. Hence, the total amount of regulatory capital is simply the sum of the
amounts to cover each asset class portfolio. The capital required by each of these five asset classes is the
VaR at the 99.9% confidence level as expressed in Annex 6.6 and indicated below;  is the random

17As explained in Section 2.3, the Herfindahl index is a measure of the granularity of a portfolio.
18Contrary to the other derivations found in Annex, this proof is not self-contained as it starts from one of the main

result from Gordy [16] and proceeds to describe what we believe are the most meaningful steps of the mixed Gordy/Vasicek
approach. The reader interested in the proof of the (here admitted) technical preliminary result can refer to [16] or [20].
19An incentive for banks to implement this approach as opposed to the standard Basel approach is that the resulting

regulatory capital is generally lower.
20See the Basel Committee on Banking Supervision document: "International convergence of capital measurement and

capital standards: a revised framework" [3], paragraph 215 to 243.
21Within the corporate asset class, five sub-classes of specialised lending are separately identified. Within the retail asset

class, three sub-classes are separately identified. Within the corporate and retail asset classes, a distinct treatment for
purchased receivables may also apply provided certain conditions are met. For the purpose of ease of explanation, only five
classes with no subclasses and no exceptions are assumed here.
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variable representing the loss given default of loan , and  the assumed fixed portion of loan  as a
percentage of the total nominal amount of the portfolio:

 () =
X



( | = −1 (1− ))Φ(
Φ−1() +

√
Φ

−1()√
1− 

)

The final capital requirement slightly differs from this exact formula as
- the unexpected loss, defined as the difference between the VaR and the expected loss, is considered

in place of the single VaR, so as to account for the provisioning of the non-performing loans expected to
default.
- The expected loss given default factor ( | = −1 (1− )) is approximated by an expected

loss given default in "severe economic downturn".
- The one-year probability of default  is scaled for loans of longer maturity, a process called

maturity adjustment.
- The result from the formula is multiplied by a scaling factor equal to 106 based on a quantitative

impact study22 .
These adjustments are described in more detail in [20].

The individual probability of default , the expected loss given default as well as the exposure
at default are all inputs provided by the bank itself or given by the regulatory rules23 . The internal
model is assessed by national regulators. Another important parameter input of the Vasicek model are
the correlations . The Basel II framework assumes the following, empirically-based estimation of the
correlation coefficient:

 = 024− 012
1− exp(−50)

1− exp(−50)

3.2.3 Limitations of the Gordy/Vasicek model

In both applications, asset correlations are introduced to obtain stressed values of the probability of
default through the use of a Vasicek model applied to the pool of all assets from the same sector. Hence
the correlations  which appear in the formulas of the model are not correlations between the different
assets of the pool considered (the pool of all the bank lendings in the case of Basel II), but a correlation
on all existing similar assets. Its use is to obtain stressed probability of defaults, probably to capture the
impact of (unknown) common factors on the default probabilities of similar loans.
Also, both approaches assume an infinitely granular portfolio, and hence can only in practice be

applied to very granular portfolio.

3.3 Statistical models: the copula approach

All the previous models are labelled as structural, as they are assuming some type of underlying process
related to the borrower’s fundamentals which explains (triggers) the borrower’s default. Another approach
avoids modelling the reasons of the defaults, but instead focuses solely in reproducing a given default
pattern. The models resulting from this approach are often called statistical default models, and the most
commonly used for pools of loans are copula-based models. Copulas are useful as they are mathematical
tools which allow to capture virtually any type of dependence between the loans’ defaults. That being
said, in most applications a specific type of dependence is assumed through the Gaussian copula. Another
advantage of copula models is that they are dynamic models of default in the sense that default can occur
at any time. This is particularly relevant for pricing instruments whose values are dependent on a pool
of loans such as ABSs, as the timing of defaults becomes very important in that context.

22365 banks participated in the study, which focuses on the impact of Bassel II in terms of capital requirement as compared
to Bassel I.
23More precisely, in the advanced IRB approach, all those paramteters have to be estimated by the bank, whereas in the

foundation IRB approach, the loss given default is given by the regulatory rules.
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3.3.1 Model description

Copulas as multivariate cumulative distribution functions
A copula can be simply defined as the joint distribution of uniform random variables on the interval

[0 1]:

Definition 1 A function  : [0 1] → [0 1] is a (-dimensional) copula if there exists  random variables
1,..., uniformely distributed on [0 1] such that  is their joint distribution function, idem est such
that:

(1  ) =  (1 ≤ 1   ≤ ) for all (1  ) ∈ [0 1]

The use of copula functions to model joint probability distributions is theoretically justified by Sklar’s
theorem:

Theorem 1 Let  = (1) be a -dimensional cdf, and  its marginals. Then there exists a
-dimensional copula  such that:

 (1  ) = (1(1)  ())

Moreover, there is unicity of the copula on the cartesian product of the ranges of the .

In particular, Theorem 1 implies the unicity of the copula associated with  when each of the marginals
 are continuous. Note the existence part of the theorem is easy to prove as setting  := () allows
to write:

 (1  ) =  (1 ≤ 1   ≤ )

=  (1 ≤ −11 (1)   ≤ −1 ())

=  (1(1) ≤ 1  () ≤ )

Because each () is uniformly distributed by Lemma 2, let  := 1(1), and let

(1  ) :=  (1 ≤ 1   ≤ )

This gives the relevant copula.

Hence a copula can model virtually any kind of dependence between random variables.

Strictly speaking, a -dimensional cdf  is entirely defined by its copula  and its marginal densities
. This is because, as seen in the proof above:

 (1  ) = (1(1)  ()) (1)

And by Sklar theorem, the converse is true on the cartesian product of the ranges of the marginals: the
cdf  entirely defines the copula as

(1  ) :=  (1(1) ≤ 1  () ≤ ) (2)

Relations (1) and (2) are very important for understanding the use and simulations of random variables
through the copula approach.

From relation (2) define a Gaussian copula as a copula satisfying:

(1  ) :=  (1(1) ≤ 1  () ≤ )
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where the  are the marginals associated to a -variate Gaussian cumulative distribution  . It happens
that without loss of generality, we can assume the  to be all standard normal Gaussian variables: this
actually yields the same Gaussian copula24 .

Similarly, one can define other types of copulas, depending on the family of the multidimensional
probability distribution functions being considered.

Quantile-to-quantile correspondence
A copula allows to model the joint probability of uniform random variables . Hence it is natural to

look for a model of joint default where the  would somehow represent the time of default  . Because
the  are all related to each others through the copula which generates them, this would allow to obtain
correlated variables for the time of default of the diverse loans of the pool. Nevertheless the times of
default variables   probably do not follow a uniform distribution. Moreover, the cumulative distribution
functions of time of default () are inferred from borrower credit score or market data as explained
earlier, and a good modelling requires using those curves () — possibly different for each borrower —
as an input to the copula model. Ideally, a joint modelling of the probabilities of default of the pool loans
should be consistent with the empirically determined marginal distribution functions (). That is,
the model should not impose additional structure on the marginal times of default than the () curves
previously determined through the intensity model, and should yield precisely those marginal probabilities
of default. The main interest of the (general) copula approach is precisely that it allows to
specify any dependence structure between the time to default while being compatible with
any given unconditional (ie marginal) individual loan distribution of default.

Recall that  is the cumulative distribution function of the time of default   of loan  and define
 := ( ). By Lemma 2,  is uniformly distributed. Hence, the copula approach can be followed,
but with  = ( ) = () (see proof of Theorem 1). This correspondence is called quantile-
to-quantile correspondence, as  = −1 (()) is a correspondence which allows to go from the
empirical distribution  to the theoretical one (given by the copula) . Notice this correspondence can
be set between virtually any empirical or inferred distribution  to any distribution . Hence the
choice of the copula is absolutely unconstrained by the .

Example of the Gaussian one-factor copula model
Li’s [24] proposes Gaussian copulas as a mean to systematically model credit risk. The Gaussian

one-factor copula model is still widely used by the financial industry.

It can easily be shown that a Gaussian copula (1  ) :=  (1(1) ≤ 1  1(1) ≤ ) with

( ) =: , for all  6= 

can be simulated from the following model:

 =
√
 + (

p
1− )

where  and  are mutually independent, identically distributed standard normal Gaussian variables,
and default has occurred at time  for borrower  whenever  satisfies:

  −1 (())

The variable  can be interpreted as the credit-quality of loan , which is influenced both by an idiosyn-
cratic factor , and by a systematic factor  which affects all the loans of the portfolio. Notice that by
independence of  and , the two-dimensional random vectors ( ) are Gaussian, and hence the vari-
able  is also Gaussian. Also, the variable  is compared to the default threshold () := −1 (()),

24This is the consequence of the fact that copulas are invariant by transformation of the marginals by increasing functions.
Because the functions  → −


are increasing and transform a normal law of mean  and variance 2 to a standard normal

Gaussian law, the result follows.
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in a way similar to the Vasicek one-factor model. This is the reason why the variable  is sometimes
called a credit-worthiness indicator, as in [29]: when it falls below the threshold, the associated loan
defaults.

Since by Lemma 2 the variable () is uniformly distributed, it follows that

 ( ≤ −1 (())) =  (() ≤ ()) = ()

as wanted. Hence only the joint probability of default depends on the copula, and the unconditional
probability of default matches exactly the empirical input ().

The time of default random variable   is thus simply the function which solves:

 = −1 (( ))

That is,
  = −1 (())

Notice   is both a function of the empirical curve  → () and of the copula since  := ()
is the uniform random variable which is the th marginal of the copula25 .

3.4 Lévy process approach

3.4.1 Model description

Before introducing the Lévy process approach proposed in 2008 by Dobransky and Schoutens [1], notice
that the previous Gaussian one-factor framework consists in assuming the following model for the credit-
worthiness of the loan :

 =  +1−

where  and 1− are independent random variables,  follows a Gaussian distribution of mean 0
and variance  and the 1− are identically distributed and follow a Gaussian distribution of mean 0
and variance 1− . It follows that

( ) =: , for all  6= 

The one-factor Lévy process framework from Dobransky and Schoutens [1] is simply a generalisation
of the above Gaussian framework: instead of using a Gaussian distribution for the processes  and
1−, another Lévy process is chosen. For example, if a drifted Gamma process is chosen instead of
Gaussian processes, then the model can be written as:

 =  +1−

with  and 1− are defined by

 =
√
−

1− =
√
(1− )−1−

where  and 1− are independent random variables following different Gamma distributions: the
variable  follows a Gamma distribution of parameter   0 and  = 1√


, while the variables 1−

follow a Gamma distribution of parameter (1 − )  0 and  = 1√

. Other processes, in particular

Poisson processes with unexpected jumps, could be used.

25Hence, to obtain a realisation  of the time of default of the th borrower, that is, a realisation of the random variable
 , all that is needed is to obtain a realisation  from the copula marginal distribution . Then the time of default is
derived as  = −1

 (). The way copulas are simulated depends on their nature. The Gaussian copula is particularly
easy to simulate: just simulate  and  as defined above, and get  := (

√
 + (

√
1− )).
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Recall that the density function of a Gamma distribution G( ) of parameter   0 and   0 is
defined by:

(;  ) =


Γ()
−1 exp(−)

with Γ() such that Z +∞

−∞
(;  ) = 1

As in the Gaussian case, the model assumes default at time  if, and only if, the credit-worthiness
index falls below some default threshold (). To calibrate this default threshold, the default probabilities
under this model are matched against those empirically obtained, that is, the theoretical probability of
default  ( ≤ ()) of the model is set equal to ()

26 , in the same way that would be done for a
Gaussian copula.

 ( ≤ ()) = ()

is successively equivalent to:

1
(()) = ()

() = −11
(())

The time of default for loan  is thus obtained, as in the Gaussian approach, by solving

 = −11
(())

That is,
 = −1 (1

())

4 An alternative: using Hidden markov chain models (HMM)
for modelling defaults

4.1 Motivation for the use of HMM in default modelling

In all the models described in the previous section, correlation between defaults is introduced, explicitly
or implicitly, by the mean of a "common risk factor", which is assumed to weigh on the creditworthiness
of all the borrowers in the pool at the same time. This common factor can be estimated directly from
the macroeconomic variables deemed relevant, as in a one-factor model CreditMetrics framework, or be
assumed to follow a given theoretical probability distribution, as in the Vasicek one-factor model. The
correlation parameter, in any case, is simply the dependence of the creditworthiness of the borrower, and
hence of his probability of default, to the common factor27 . When an attempt is made to specify the
common factor, an issue arises. If the common factor is assumed to follow a (theoretical) probability
distribution, which probability distribution should be chosen? The Vasicek one-factor model and the
Gaussian copula model choose a normal distribution. If on the contrary the common factor is assumed
to depend on observable macroeconomic data, the issue of correctly selecting the relevant explanatory

26As explained in section 2.1.2, () was obtained from the intensity model calibrated with the empirical, point in
time data  .
27Admittedly, using industry and country specific factor loadings, CreditMetrics allows to go farther than the framework

of a single one -factor model. Nevertheless, even then, it does not calibrate the model on actual defaults, but on stock
market indices which are assumed to represent the (hidden) firm value process as in a Merton’s model.
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variables arises. When the focus is shifted away from the identification of the common factor to the
correlation factor, the problem simply translates into the issue of estimating this correlation factor.

A Hidden Markov chain Model (HMM) consists of an unobservable Markov chain which determines
the risk-state of the economy. The risk-state influences the individual and/or collective loan probability
of default. Hence, in a HMM, correlation between the loans’ defaults is induced only by the common
factor, which is the hidden risk state. In this sense, HMM models are similar to many of the models
detailed in the first section, be it the Vasicek model (Section 3.2), the Gaussian copula model (Section
3.3), or the generalisation of the copula approach with Lévy processes (Section 3.4). As explained earlier,
all these models indeed introduced correlation in the default events through a single unobserved common
factor. The rationale for using HMM models in estimating default rates is that it does not need to
make any assumptions on the possible set of variables driving the common factor, nor on the common
factor distribution. The common factor is determined endogenously from the default data by maximum
likelihood techniques. In particular, it could be that the credit cycle follows different dynamics than the
usual macroeconomic variables that we associate with expansions and recessions like GDP growth28 . In
that case, HMM will allow to get to very different results in terms of probability of default estimations
compared to any other model based drectly on macroeconomic variables, as it will allow a default-cycle
to be fit to the data, which can then be used for predictions. Admittedly, a -state HMM only allows
the common factor to take  distinct values. But these values do not appear as numerical values in a
default triggering inequality as in the case of the previous models reviewed. Instead, each value for a
"HMM common factor" determines another "state" of the economy, in which any probability distribution
of default can be assumed.

In this section we provide an illustration of the use of the HMM approach in a way similar to [14],
but on European default data.

4.2 Description of the two-states binomial HMM and implementation

In a two-state HMM, the risk-state of the economy is modelled via two different (unobserved) states: a
low risk state, labelled 1, and an high risk state, labelled 2. The risk state determines the probability
distribution of defaults. Loans are assumed to default independently conditional to the risk state. They
are also assumed to be so similar than they have the same probability of default. Hence if  is the
individual loan probability of default in a given state  in {1 2}, the law governing the number of defaults
e at time  is simply the binomial distribution:

 ( e = ) =

µ




¶
 (1− )

−

where  is the number of bonds in the sample at time , and  any integer in {1  }. We will call
this model a binomial two-state HMM. In the high risk state the individual probability of default 2 is
expected to be higher than in the low risk state.

Very often time series of defaults are only available through the time series of the corresponding default
rates. A way to use the two-states binomial HMM described above in the case of default rate series is
to assume that the default rate multiplied by some (high enough) constant  and rounded to the closest
integer corresponds to the number of actual individual defaults of some (proxy) portfolio of constant size
 = . Hence it is assumed that there exists some portfolio for which each time  loans default in one
period,  new loans of similar risk-profile are introduced before the start of the new period. Admittedly,
this approach may fail to provide some useful information about the loans’ default behaviour compared

28For an example of how the credit cycle of a specific industry can differ substantially from the overall economy business
cycle (as defined by the IMF), the reader can refer to the US Energy sector study performed in [14]. Assuming a higher
probability of default for the energy companies in the index during recessions would lead to results opposed to reality, as
the two cycles are almost completely disjoint.
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to a "real default data series" approach. For example, periods of high defaults could have made the
least credit-worthy loans default, and in the next period one could expect less defaults, a feature which
would be captured by a unwarranted fall in the riskiness of the state if the model is applied to the rate
series. Nevertheless, empirically we did not find any significant difference between the two models. The
reason might be that the number of defaults being usually low compared to the overall size of the sample,
working with a decreasing sample size or on the default rate series is roughly equivalent.

The transition from state  to state  is governed by the state transition matrix  = (), where 
is the probability of moving to state , conditional to being in state . Given an observation sequence
1 , where for each  in {1  } the number  is the realisation of the random variable e defined
as the number of defaults at time , the model is re-estimated repeatedly until the log-likelihood of
observing 1 is maximised.
After estimation, retrieving the implied "most-likely" state sequence can be done using the Viterbi

algorithm which finds, through dynamic programming, the single state sequence with the highest proba-
bility of occurring among all state-sequences of length  . Alternatively, it can be done by maximising the
expected number of correct states, an algorithm which makes use of some previously computed quantities
of the estimation, and that we choose to call the HMM algorithm for state-retrieval29 . Both state-retrieval
algorithms outputs depend not only of the observation sequence but also on the estimated parameters
of the model. The converse does not hold: retrieving the state sequence is only an additional analysis
which does not affect in any way the fitted parameters of the model.

There are three main issues in the practical implementation of HMMs: the efficiency of the algorithms
used, underflow30 , and the non-global character of the maximum likelihood estimates found which makes
them depend on the assumed initial conditions.
Efficient algorithms we borrow from the Speech Recognition literature [30] and we implement in

Matlab. These algorithms involve computing the log-likelihood, given the model, using the so-called
forward and backward paths, which contrary to direct computation results in an efficient (polynomial
time in input size) algorithm. The methodology used in the paper is explained in detail in Annex 7.1.1.
For the computation of forward and backward paths underflow is dealt with by rescaling the corre-

sponding quantities by an appropriate factor, at each step, after verifying that the re-scaled parameters
satisfy the recursive relation of the efficient algorithm. For the Viterbi algorithm, underflow is simply
dealt with by taking the logarithms.
The possible existence of different (local) maxima is dealt with by perturbing the initial conditions

in an ad-hoc manner. This is by no mean a complete answer to the problem, but can certainly allow
detecting instable solutions, that is, local maxima which depend very much on the starting point used
for the parameter estimations.

4.3 An example with binomially-simulated data

To provide an illustration of the methodology as well as a performance check of the (non-trivial) algorithms
involved, we apply it to data simulated by a binomial two-state HMM. The data-generating process has
a state-transition probability matrix:

 =

∙
09 01
01 09

¸

Hence, being in any state at a given period, there is a 90% probability to stay in the same state in
the following period and a 10% probability to change state. We also set the individual loan probability
of default at 1 = 0004 in the low risk state and at twice this number in the enhanced state: 2 = 0008.

29The two approaches do not theoretically necessarily yield the same result. In practice we noticed the state sequences
retrieved closely resemble each other.
30Underflow occurs when the quantities computed become so small that they are (wrongly) assimilated with 0 in the

machine memory.
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We simulate  = 80 observations with a sample of constant size  = 1000. The initial state is the low
risk state (state 1), that is, we set the initial probability distribution to  = (1 0).

To start our estimation, we make the following (very rough) guess:  =

∙
05 05
05 05

¸
,  =

(05 05) and 1 = 0001, 2 = 0020. We allow for 100 iterations for maximising the log-
likelihood as described in Annex 7.1.1, which results in the estimated parameter indicated, together with
our starting guess and the true model parameters, in the table below31 :

initial guess parameter estimates true data-generating process
1 05 1 1
2 05 0 0
1 00001 00034 0004
2 00020 00079 0008
11 05 08823 09
22 05 09123 09

A state-sequence retrieval algorithm can then be applied to the fitted model to try to recover this
true state sequence. The graph on the top left-hand corner of Figure 1 below indicates the default
series generated and the underlying true state sequence. The other graphs indicate the retrieved state
sequence, through either the Matlab built-in Viterbi algorithm, the author’s own implementation of the
Viterbi algorithm, or the author’s HMM algorithm which maximises the expected number of correct states,
as an alternative to maximising the likelihood of a given chain sequence among all possible state sequence
as in the Viterbi algorithm.
Because we simulate the numerical example on which the calibration is applied, we know the true

underlying state sequence. We can compute the Hamming distance between the true sequence and the
retrieved one, and translate it into the score of the total number of correctly retrieved states divided by
the total number of states (which is 80 in our example). The results for this particular simulation are
reported below:

author’s Viterbi Matlab Viterbi author’s HMM
score 08750 08750 08875

The goodness of fit of the model can be assessed through the computation of the so-called mid-pseudo
residuals (see Annex 7.1.5). If the fitted model is correct, these residuals should be standard normal.
Figure 2 below indicates, from top to bottom and left to right: the data series of the residuals of our
simulation, their fit vis-a-vis of the standard Gaussian law via a histogram and a quantile-to-quantile
plot, and their partial autocorrelation function (PACF). Notice in HMM models it is perfectly normal
for residuals to be correlated: this does not have negative implications for the validity of the model.
Furthermore, normality tests can be carried out on these pseudo-residuals. For example, Jarque-Bera

normality tests do not reject the null of a standard Gaussian for the mid-pseudo residuals at the 10%
confidence level.
We will be able to compare this fit to those obtained on real world default data in the next sections.

One can also use parametric bootstrap to obtain the standard deviation as well as the variance-
covariance matrix of the estimated parameters. Parametric bootstrap is described in Annex 7.1.3. It
generates 100 time-series of default from the fitted model, fits a HMM model to each of the scenario using
the same starting guess than for fitting the model for the first time, and 100 iterations for the maximisation
of the log-likelihood in each of the fit, and allows to obtain statistics on the fitted parameters. We obtain

31To ensure reproducibility of results we used the Matlab command rng(5) to set the seed of the random number generator.
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Figure 1: Simulated default data and state sequences (true one and retrieved)

the following correlation matrix:

1 2 11 22
1 1 0.5431 0.3562 -0.1164
2 1 0.1571 -0.2162
11 1 0.4693
22 1

as well as the mean and standard deviation of each parameter, which are reported in the table below:

true generating model mean parameter estimate standard deviation
1 00038 00039 00005
2 00076 00079 00009
11 07780 08668 00876
22 0836 08535 01221

Figure 3 below indicate the histograms of the empirical distribution of each fitted parameter 1, 2,
11 and 22. As can be seen from the top two histograms, 1 and 2 can reasonably be assumed normally
distributed. From this we deduce the 95% confidence interval as 1.96 times the standard deviation:
1 = 00039 ± 000098 and 2 = 00079 ± 0001764 As the upper bound for 1 (000488) is lower than
the lower bound for 2 (0006136), we can safely say that the two distinct states are well identified (at a
95% confidence level).
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Figure 2: Analysis of the goodness-of-fit of the model using mid-pseudo-residuals

4.4 European speculative grade corporate defaults from Moody’s

The data sample consists of 12 month trailing default rates, at a monthly frequency, of European spec-
ulative grade corporates bonds, as provided by Moody’s on its website32 . The default rate series was
converted into a synthetic bond sample as explained in Section 4.2, using a factor  = 1000, meaning
there are at each time period 1000 bonds in the sample and that the first period number of defaults is 48
(corresponding to the rate of default of 48%). The sample starts on January 1999 and ends on January
2013. The speculative grade corporate bonds follow a credit cycle more closely related to individual cor-
porate loans than investment grade corporate bonds. Hence, they are taken here as a proxy for corporate
loans. Nevertheless, drawback of this time series with respect to HMM are twofold:
- it is a trailing rate, meaning the series is bound to exhibit persistence, and the fitted HMM will

reflect this persistence. Hence, if the goal is to predict future defaults, using point in time (in this case,
monthly) default rate would have been more appropriate.
- It does not distinguish between the different sectors (consumer, etc.) and thus is not granular enough

to be useful for estimating precisely credit claims probability of defaults, for example. The aggregation
potentially explains that the high risk states are distinguishable by simple graphical inspection of the
data time series, without requiring the more sophisticated use of HMM provided here.

Initial values for the estimation are fixed in the most objective way as possible as follows: the initial
probability distribution is  = (05 05). This means, we assume there is no more chance to be in state 1

32www.moodys.com
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Figure 3: Empirical estimates dispersion

than in state 2. Also, we assume that at each state there is an equal chance to move to the other state,
that is, the initial state transition matrix is:

 =

∙
05 05
05 05

¸

Concerning the individual loan probability of default in the low risk state and the high risk state, they are
fixed the following way: according to the initial distribution and transition probability indicated above,
there is a 50% chance of being in state 1 and a 50% chance of being in state 2. More precisely by the
property of Markov chain such an initial chain would be 50% of the time in state 1 and 50% of the time
in state 2. The average probability of default is thus 1

21 +
1
22, which we make equal to the realised

frequency of default of the sample. We then just need to specify the ratio 2
1
and the values of both

1 and 2 will be determined. We decide to choose
2
1
= 2, which is the single arbitrary choice in our

initial guess. The table below indicates the initial guess, and the parameter estimates obtained after 100
iterations to maximise the log-likelihood.

initial guess parameter estimates
1 05 1
2 05 0
1 00315 00206
2 00629 00922
11 05 09810
22 05 09523

The results are interesting. The maximum likelihood estimation has separated further two risk-state
and has fully characterised them. The initial ratio of 2 between the low and high risk state was not a
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Figure 4: 12 month trailing default series on all European speculative grade bonds rated by Moody’s

local maxima and has been increased as high as 00922
00206 = 44757. Hence probability of default appears

in this sample very much dependent on the state, which gives credit to muti-state models for defaults.
Similarly, the permanence of being in a given risk-state and hence the "inertia" of the model has been
increased, from the null inertia we started with (as in any given state we assumed a 50% chance to go to
the other state) to as high as 98%, for the low risk state, to 95% for the high risk state. Hence in a low
risk state there is only a 2% chance to go to a high risk state, and from a high-risk state there is a 5%
chance to go to a low risk state.

Figure 5 below indicates the default series and the underlying retrieved state sequence. Notice the
Viterbi algorithm and the HMM algorithm retrieve the same state sequence of low and high default states

Figure 5: Default series and retrieved state sequence

The goodness of fit of the model can be assessed through the computation of the so-called mid-pseudo
residuals (see Annex 7.1.5). If the fitted model is correct, these residuals should be standard normal.
Figure 6 below indicates, from top to bottom and left to right: the data series of the residuals of our
simulation, their fit vis-a-vis of the standard Gaussian law via a histogram and a quantile-to-quantile
plot, as well as their partial autocorrelation function (PACF). As indicated earleir in HMM models it is
perfectly normal that residuals be correlated: this does not have negative implications for the model.
Furthermore, normality tests can be carried out on these pseudo-residuals. For example, Jarque-Bera

normality tests reject the null of a standard Gaussian for the mid-pseudo residuals at the 10% confidence
level, but not at the 5% level.

One can also use parametric bootstrap to obtain the standard deviation as well as the variance-
covariance matrix of the estimated parameters. Parametric bootstrap is described in Annex 7.1.3. The
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Figure 6: Analysis of the goodness-of-fit of the model for corporates using mid-pseudo-residuals

set up is the same as explained in Section 4.3, and we obtain the following correlation matrix:

1 2 11 22
1 1 00091 01181 −01253
2 1 −00564 01351
11 1 −01531
22 1

as well as the mean and standard deviation of each parameter. The table below reports the previ-
ously indicated fitted model (which generates the scenario for our bootstrap), the means of the different
parameters of the fitted models and their standard deviation.

parameter estimates mean parameter estimate standard deviation
1 00206 00206 00005
2 00922 00920 00015
11 09810 09788 00147
22 09523 09340 00445

Figure 7 below indicates the empirical parameter distribution obtained for each of the fitted parameter
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1, 2, 11 and 22. As can be seen from the top two histograms, 1 and 2 cannot reasonably be
assumed normally distributed. Nevertheless they seem more concentrated around the mean than a normal
law. Hence we can deduce a 95% confidence interval as (less than) 1.96 times the standard deviation:
1 = 00206±00005 and 2 = 00922±00015 As the upper bound for 1 (00211) is lower than the lower
bound for 2 (00907), we would say that the two distinct states are well identified (at a 95% confidence
level).

Figure 7: Empirical estimates dispersions

4.5 European pool data from Bloomberg

To be useful for the practical purpose of assessing the probability of defaults of credit claims, there is
the need for credit claims default series data. A minimum requirement on the data is that it should be
split by type of loans, as for example mortgage loans have a very different risk profile than, say, loans
to Small and Medium Enterprises (SMEs). Also, divergence in overall European country risk profiles as
well as difference in national legislation concerning loans would indicate that country-specific indexes are
needed, at least for a risk analysis purpose.
Default data is in general very difficult to obtain. Defaults are rare events, hence very long default

series are required to perform the HMM analysis to uncover risk states and their conditional default
probabilities. Nevertheless, if the pool sample is large enough, one can expect to be able to observe
enough defaults in shorter time periods. The new European Data Warehouse will be providing loan by
loan data, including default, for all Eurosystem eligible ABSs. As pools of credit claims constitute the
underlying backing ABSs, this data will provide a valuable source of defaults for the assessment of the
risk of credit claims in general.
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Currently, this data is not available with a sufficiently long history. We obtained instead the one
month delinquency rate for pools of credit claims backing eligible ABSs from Bloomberg. Observations
can date back as far as to 2006. This is unfortunately no loan-by-loan level data, but it provides the
percentage of default of the pool in percent of the nominal outstanding the pool, at each point in time33 .
We aggregated this data over all the pools of a given country and asset class at each point in time,
weightened by the proportion of the pool outstanding amount to the overall outstanding amount of all
ABSs, to obtain our generic default rate indexes (using delinquencies as a proxy for defaults).
We chose here to illustrate the HMM methodology on Spanish SMEs.
The data is presented in Figure 8 below:

Figure 8: Spain CLOs one month delinquencies

Initial values for the estimation are fixed in the same way as in the previous section (Section 4.4).
The parameter estimates are reported in the table below, together with the initial values assumed:

initial guess parameter estimates
1 05 1
2 05 0
1 00100 00091
2 00200 00179
11 05 09613
22 05 10000

The results are interesting. The maximum likelihood estimation has separated further two risk-state
and fully characterised them. The initial ratio of 2 between the low and high risk state was almost a local
maxima and has only been decreased to 00179

00091 = 1967033. Probabilities of default are, for this sample,
very much dependent on the state. Similarly, the permanence of being in a given risk-state and hence the
"inertia" of the model has been increased, from the null inertia we started with (as in any given state we
assumed a 50% chance to go to the other state) to as high as 96%, for the low risk state, to 100% for the
high risk state. This 100% probability was estimated because the sample only exhibits a single change
from state 1 to state 2. Hence it does not provide the HMM with any information about the possibility
of leaving the high risk state, and in consequence the HMM indicates a structural change, as it predicts
the new high probability of default will persist indefinitely.

33Admittedly, this is not quite the same as the percentage of defaults in terms of number of loans, with the exception of
the particular case where all loans would be of the same size.

211



Figure 9: Default series with retrieved state sequence.

Figure 9 below indicates the default series and the underlying retrieved state sequence. Notice the
Viterbi algorithm and the HMM algorithm retrieve the same state sequence of low and high default states.

The goodness of fit of the model can be assessed through the computation of the so-called mid-pseudo
residuals (see Annex 7.1.5). If the fitted model is correct, these residuals should be standard normal.
Figure 10 below indicates, from top to bottom and left to right: the data series of the residuals of our
simulation, their fit vis-a-vis of the standard Gaussian law via a histogram and a quantile-to-quantile plot,
as well as their partial autocorrelation function (PACF). Notice in HMM models it is perfectly normal
that residuals be correlated: this does not have negative implications for the model.

Furthermore, normality tests can be carried out on these pseudo-residuals. For example, Jarque-Bera
normality tests reject the null of a standard Gaussian for the mid-pseudo residuals at the 10% confidence
level, but not at the 5% level.

One can also use parametric bootstrap to obtain the standard deviation as well as the variance-
covariance matrix of the estimated parameters. Parametric bootstrap is described in Annex 7.1.3. The
set up is the same as explaned in Section 4.3, and we obtain the following correlation matrix:

1 2 11 22
1 1 01073 −03755 −00587
2 1 −00915 07561
11 1 −00149
22 1

A very strong positive coefficient (75%) is found between 2 and 22. This indicates that the results
at this level should be taken with caution: the parameters do not seem uniquely determined.
We also obtain the mean and standard deviation of each parameter. The table below reports the

previously indicated fitted model (which generates scenario for our bootstrap), the means of the different
parameters of the fitted models and their standard deviation.

parameter estimates mean parameter estimate standard deviation
1 00091 00094 00017
2 00179 00176 00015
11 09613 08770 01831
22 10000 09523 00148

Figure 11 below indicates the empirical parameter distribution obtained for each of the fitted para-
meter 1, 2, 11 and 22. As can be seen from the top two histograms, 1 and 2 cannot reasonably
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Figure 10: Analysis of the goodness-of-fit of the model for Spanish CLOs using mid-pseudo-residuals

be assumed normally distributed. They seem much more concentrated around the mean than a normal
law. Hence we can deduce a (conservative) 95% confidence interval as (less than) 1.96 times the standard
deviation: 1 = 00091 ± 00017 and 2 = 00179 ± 00015 As the upper bound for 1 (00108) is lower
than the lower bound for 2 (00164), we conclude that two risk states are indeed disentangled.

5 Conclusion

In this paper we reviewed the most commonly used models of defaults, and explained them in a unified
framework with consistent concepts and notations. These models often rely on some creditworthiness
indicators which have to exceed some threshold for the loan to default, and on correlation coefficients
which reflect common shocks to all the creditworthiness indicators of the loans within the pool. We then
proposed an alternative approach for modelling loans default through Hidden Markov Chains. Correlation
in that approach is induced by the common state of the credit cycle, which impacts all loans, thus sharing
similar features with the previous approaches. A main difference of the Hidden Markov Chain model is
that the economy state sequence is not assumed a priori to follow a given theoretical distribution, or to
follow a macroeconomic proxy, but estimated directly from the time-series of default pattern. Empirical
evidence in the European corporate bond market and the Spanish CLOs market suggested that default
series clearly exhibit multi-state properties, which support the use of multi-state Markov model to get
more precise estimate of the probability of defaults in each state.
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Figure 11: Empirical estimates dispersions
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6 Annex 1: formal proofs, derivations

6.1 Proof of the intensity model formula when () is derivable

By definition, the instantaneous hazard rate  is the average probability of default of the loan  in over
a very short time interval [ + ], knowing the loan has not defaulted before time , hence we have:

 = lim
→0

(
 (    ≤ +  |    )


) = lim

→0
(
 (    ≤ + )

 (   )
)

= lim
→0

(
(+ )− ()

(1− ())
) =

1

1− ()
lim
→0

(
(+ )− ()


)

=
0

()

1− ()
= −( −0

()

1− ()
)

Hence  is integrable and integrating both sides yields:

Z 

0

 = − ln(1− ()) + ln(1− (0))

From which we deduce the expression of () as a function of the trajectory ():

() :=  (  ≤ ) = 1− exp(−
Z 

0

)

6.2 Merton threshold derivation

Merton assumes the value process  of firm  is driven by:

 = + 

Using Ito’s lemma to find the dynamics of  ln( ) and integrating one can derive the process driving
ln():

ln( ) = ln(0) +  − 2
2

 + 

√


where  is a standard normal gaussian variable.
Now, Merton assumes default if, and only if, the value of the firm falls below its debt level, idem est

   . This is successively equivalent to

ln( )  ln( )

ln(0) +  −
2
2

 + 

√
  ln( )

 
ln( )− ln(0)−  +

2
2 



√


Hence we can define:

 =
ln( )− ln(0)−  +

2
2 



√


216



6.3 CreditMetrics as a Merton model of default

CreditMetrics is based on the Merton model, although it does not model  explicitly. Indeed, the
parameter  is not derived from Merton model, but calibrated using the corresponding empirical prob-
ability of default over the time horizon  , that is, ( ). Indeed from Φ() = ( ) it follows that
 = Φ

−1(( )).
Because by definition (see Annex 6.2)

ln(0) +  −
2
2

 + 

√
 = ln( )

we have:

 =
ln(0)−  +

2
2 



√


Because under the Merton model  is assumed to follow a standard normal distribution, the asset-value

ln(0), under the Merton model, has to follow a normal distribution of mean  − 2
2  and

standard deviation 

√
 .

CreditMetrics maps each borrower  to a country and a sector stock index. Then it uses this stock
index as a proxy for the (unobservable) asset value process . The obtained variable ln(0) is
then standardised, which as explained above results, under the assumptions of the Merton model, in a
standard normal variable . This is the reason why in the CreditMetrics context  is sometimes referred
to as the standardised log-return level.
Then CreditMetrics decomposes  as  = Ψ+ where the  are independent, identically distrib-

uted standard Gaussians and  is a Gaussian vector representing a systematic risk-factor independent
from the , and Ψ is the corresponding vector of factor loadings, that is, the weight given to each risk
factor in the model.
In Merton model default occurs if, and only if,   , that is, if and only if    − Ψ. Hence

CreditMetrics obtains the probability of default conditional to the realisation of  as  (  −Ψ) =
Φ( −Ψ).

6.4 From the Merton one firm model to the Vasicek model multi-firm model

Because Merton model is a model for a single firm, it makes no assumption on the cross-correlation of
the  derived above (Annex 6.2). Vasicek model consists simply in assuming that the  can be written
as

 =
√
 + (

p
1− )

where  and the  are mutually independent, identically distributed random variables following a stan-
dard normal law. Note that, by independence, the  are themselves Gaussian, of variance 1 and expected
value 0.

6.5 Vasicek derivation of pool default rate distribution for large homogenous
portfolios

Let () be the probability of default of loan  conditional to a realisation of the common factor .
Then

() =  (   |) =  (
√
 + (

p
1− )   |)

=  ( 
 −√√
1− 

)

= Φ(
 −√√
1− 

)
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Remark: Very often, this result is used to generalize the Vasicek one-factor model by letting  follow
any distribution (possibly not the standard normal Gaussian distribution).

The aim of the Vasicek model is to derive the default distribution of a given pool or porfolio of loans.
To reach this aim it proceeds to make a certain number of assumptions. First, all the loans have equal
size, and same probability of default  =: . This implies  = Φ

−1() = Φ
−1() =: . Second,

the limiting distribution of losses is computed when  tends to infinity, meaning in practice that a high
number of loans is required to apply the Vasicek model.

Let  be the default indicator of the th loan, that is,  is the random variable equal to 1 if loan 
defaults and 0 otherwise. Let  = 1



P
  be the pool default ratio. The core of Vasicek proof consists in

noticing that since  ( = 1 |) =  (  Φ−1() |) = Φ(
Φ−1()−√√

1−
), in the model the variable

 are independently distributed when conditioned to the value of the common risk-factor . Hence, by
the Law of Large Numbers, the arithmetic average  = 1



P
  converges to the distribution of  when

 tends to infinity. Hence

 ( ≤ ) =  (() ≤ ) =  ( ≥ −1 ()) = Φ(−−1 ())

since () = Φ(
−√√
1−

) is a decreasing function of  and  is assumed to be a standard Gaussian law.

Since

 = ()⇔  = Φ(
 −√√
1− 

)

⇔ −√1− Φ−1()√


=  = −1 ()

we have

 ( ≤ ) = Φ(

√
1− Φ−1()− √


)

= Φ(

√
1− Φ−1()−Φ−1()√


)

6.6 Derivation of Value at Risk and Expected shortfall in the Gordy/Vasicek
framework

Two main results from Gordy’s framework [16] are the derivation of the VaR() and of the () for
the limiting loss distribution of a portfolio whose Herfindahl index tends to 0, assuming a single factor
is able to capture all the co-dependence between loans in the portfolio. In the examples of the use of
that framework chosen in this paper (Basel II capital requirements), losses after recovery are taken into
account. Hence this section makes an exception compared to the rest of the paper and explicitly considers
recoveries values. Let  be the loss given default of loan . Hence a total monetary loss following
default corresponds to the special case where  = 100%. Let  be the event of default of loan .
Hence, if the time-frame of our one-period model is [0  ], the event  is linked to the previously defined
random variables   and  by:

 = (  ≤  ) = ( = 1)

The VaR of the limiting loss distribution is then:

VaR() = (
P

1

| = Φ−1(1− ))

This result is admitted here34 . Crucial to Gordy’s derivation is that the default events once conditioned
on the realisation of the common factor  are independent. Assuming the exposures of each individual

34The above formula also holds for  following a different distribution than a standard gaussian one: just replace Φ−1 by
−1 . A proof, in the general setting, can be found in [20], Annex 2.8.9, page 53, or in Gordy original article [16].
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loan  are fixed and that each  is, conditionally to , independent from the default event , we
can write:

VaR() =
P

( | = Φ

−1(1− ))(1 | = Φ
−1(1− ))

Now the expression (1 | = Φ
−1(1− )) = (1 | = −Φ−1()) =  ( = 1 | = −Φ−1()) is

the probability of default of loan  subject to a given value (−Φ−1()) of the risk factor . It is thus a
known expression in the Vasicek framework (see Annex 6.5):

(1 | = −Φ−1()) = Φ(
 −√√
1− 

)

with  = Φ
−1() and  = −Φ−1() and where  corresponds to the correlation within the assets of

a (imaginary) pool made of loans similar to loan . This probability of default conditional to a systemic
factor event is then plugged into Gordy’s formula:

VaR() =
P

( | = Φ

−1(1− ))Φ(
Φ−1() +

√
Φ

−1()√
1− 

)

The ES of the limiting loss distribution can be expressed as35

() =
1

1− 

Z 1



VaR()

Using the previous formula for expressing VaR(), and assuming a fixed value for the stressed (conditional)
expected loss given defaut ( | = Φ

−1(1− )) =: 
 yields:

() =
1

1− 

Z 1



P



 Φ(
Φ−1() +

√
Φ

−1()√
1− 

)

=
1

1− 

P





Z 1



Φ(
Φ−1() +

√
Φ

−1()√
1− 

)

But the change of variable  = Φ(−) gives, since (−) = ():

Z 1



Φ(
Φ−1() +

√
Φ−1()√

1− 
) = −

Z −Φ−1(1)

−Φ−1()
Φ(
Φ−1()−√√

1− 
)(−)

= −
Z −∞

−Φ−1()
Φ(
Φ−1()−√√

1− 
)()

=

Z −Φ−1()

−∞
Φ(
Φ−1()−√√

1− 
)()

= Φ2(−Φ−1()Φ−1()
√
)

where we used that

Φ2(  ) =

Z 

−∞
Φ(

− √
1− 2

)()

Hence

() =
1

1− 

P



 Φ2(−Φ−1()Φ−1()

√
)

35This general fact is admitted here. For a proof the reader can refer to Acerbi and Tasche (2002), "On the cooherence
of expected shortfall" J Bank Fin 26 (7), page 1492.
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6.7 Simulation of the reduced Gaussian copula model and link to the Vasicek
model

Here we study a particular case of Gaussian copula, show how simulations of this reduced Gaussian copula
model can easily be obtained, and how it is consistent with the structural one-factor Vasicek model. We
also explain in detail how to simulate time to default within this framework.

Let (1  ) :=  (1(1) ≤ 1  1(1) ≤ ) be a Gaussian copula; it is associated to a
Gaussian cdf (1) =  . Without loss of generality, we can assume the  are standard normal
variables. We seek to impose the following simple linear correlation structure: the images of marginal
−1 () =  of the copula  have to satisfy:

( ) =:  for all  6= 

The coefficient  is often called "asset correlation", because asset price correlations are often used as a
proxy for . It is thus a parameter of the copula, which has been reduced in its generality by assuming
only a single cross-asset correlation, instead of the general (−1)2 possibly distinct cross-correlations.
This simplifying assumption is often made in default modelling.

A way to obtain the condition ( ) =:  for all  6= , is to simulate +1 independent and iden-
tically distributed random variables  0

1  
0
+1 and then compute  =

√
1− Φ−1( 0

)+
√
Φ−1( 0

+1),
where Φ is the cdf of a standard normal Gaussian.
Indeed, by bilinearity of the covariance and by independence we have:

( ) =  (Φ−1( 0
+1)) = 

q
 (Φ−1( 0

))
q

 (Φ−1( 0
))

and, since by independence of the Φ−1( 0
) with the Φ

−1( 0
+1):

 () =  (
p
1− Φ−1( 0

) +
√
Φ−1( 0

+1))

= (1− ) (Φ−1( 0
)) +  (Φ−1( 0

+1))

=  (Φ−1( 0
))

we do get

( ) =
( )

 ()
=

( )p
 ()

p
 ()

= 

This derivation explains the choice of the form for the coefficients
√
1−  and

√
. It is important to

note that the correlation coefficient , which is indeed a Pearson-correlation coefficient at the level of the
random variables  = Φ

−1() = Φ
−1(( )), is not necessarily the Pearson correlation coefficient for

the final variables explained (the  ), nor the "uniformalized" ones (the  = ( )). Note that in the
case of a Gaussian copula, because the cross-correlation between a standard multivariate Gaussian vector
determine entirely the distribution, the assumption that ( ) =  for all   entirely characterizes
the distribution.

Now, notice that we wrote:

 =
p
1− Φ−1( 0

) +
√
Φ−1( 0

+1)

Letting  := Φ
−1( 0

) and  := Φ−1( 0
+1) this is

 =
√
 + (

p
1− )

 is called the idiosyncratic factor associated to loan  while  is called the systematic risk factor,
as it is common to all . Hence simulating random variables for the purpose of using the (statistical)
copula model yields a structural model, in which , which can be interpreted as the credit-quality of loan
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, is influenced both by an idiosyncratic factor  and a systematic factor  which affects all the loans
of the portfolio. Because  and  are normally distributed by Lemma 1, this is precisely the Vasicek
one-factor model. Notice that by independence of  and , the two-dimensional random vectors ( )
are Gaussians, and hence as a linear combination of them the variable  is also Gaussian. This is the
reason why the resulting model is sometimes called the standard single-factor Gaussian copula model.

The simulated default time  (realisation of the variable  ) is the time which solves:

() = 

where  is a realisation of  = Φ(). This solves into

1− exp(−) = 

 =
ln(1− )

−

7 Annex 2: Hidden Markov Chains for default rates

7.1 Efficient algorithms for the maximum likelihood (ML) estimation

7.1.1 Expressing the likelihood

The practical strength of hidden Markov chains (HMMs) is that there exists an efficient algorithm to
compute the likelihood of the model being in a given state knowing the observation sequence. We describe
below in a succinct but self-contained way the main results that served as a basis to implement the paper
HMMs for default series.

Let  be the number of hidden states of the underlying Markov model. Without loss of generality
we can label these states from 1 to  . In the paper we only considered two states: a low risk state, and
a high risk state, hence  = 2, but the results and algorithms presented in this section can apply to
an arbitrary number of states  . Let  be the length of the sample of observations. Without loss of
generality, time is labelled from 1 to  . Let  = () be the state-transition probability matrix of the
model time-invariant hidden Markov chain; it is defined by:

 =  (+1 =  | = )

For each state  in {1 2  }, the number of defaults at time , assuming the underlying state is , is
the realisation of a random variable which follows a discrete probability distribution function () (or,
in the continuous-observation case, a probability distribution of density ()) supported by {1 2  }
(in the discrete case) where  is the size of the sample at time . For  in {1 2  } we denote by
()() the probability of observing the value  under () (or, in the continuous-observation case, the
density of  under ()).

Let  = (1 2) be the initial distribution, and let  = ( ) be the model. Let  = 1

be the underlying sequence of states of the HMM. Let  = 1 be the sequence of observations.
Hence,  is the realisation of a random variable of law () and belongs to {1 2  }. Using basic
properties of Markov chains and the model definition it is clear that the probability  () of observing
the sequence  while having the underlying state sequence  is simply:

 () = 1121(1)(1)232(2)(2)−1 ( )( )
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Re-grouping similar terms yields:

 () = 1

−1Q
=1

+1
Q
=1

()()

Hence the log-likelihood can be written as:

log( ()) = log(1) +
−1P
=1

log(+1) +
P
=1
log(()())

At this point it is convenient to introduce the following indicator functions (), for  in {1 2  }, and
( ), for  in {1 2   − 1}, which are dependent on the random variables , and defined by:

() = 1(=) =

½
1 if  = 

0 otherwise

and

( ) = 1(=+1=) =

½
1 if  =  and +1 = 

0 otherwise

The log-likelihood can be re-written as (notice the re-writting only consists in adding terms of zero values):

log( ()) =
P
=1

1() log() +
P
=1

P
=1

−1P
=1

( ) log() +
P
=1

P
=1

() log(()())

The algorithm consists in repeating a certain number of times the following two steps.

First, compute estimates [() and
\( ) of the parameters () and ( ), knowing  = 1

and assuming the current values of the model ( ). To this aim use efficient algorithms based on the
recursive relations described below for computation, but rescal at each step to avoid underflow. These

estimates [()and
\( ) replace, in the expression above, the true values () and ( ).

Second, each term of the resulting maximum likelihood estimate is maximised with respect to the
model parameters ( ) separately. This is possible because  only appears in the first term,  in the

second and  in the third. Moreover, notice that in the second term the
P

=1

P−1
=1 ( ) log() can

be maximised independently (subject to the linear constraint
P

=1  = 1), and that similarly the third

term is made of the  separate sums
P−1

=1 () log(()()) which can be maximised separately.

7.1.2 The first step

In what follows we detail efficient algorithms for computing the estimates of () and ( ). For

simplicity of notation, we will drop the hat, hence () and ( ) stand for
[() and

\( ).
By definition,

() =  ( =  |) =
 ( =    |)

 ( |)

( ) =  ( =  +1 =  |) =
 ( =   +1 =   |)

 ( |)

To compute  ( =    |) efficiently, as well as  ( |), we introduce the so-called "forward paths".
Let  be in {1  } and  be in {1  }. We define the forward path () as:

() =  ( =   1 |)
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Clearly
1() =  (1 =   1 |) = 1()(1)

Then the others (), for  in {2  } can be computed recursively by noticing that:

() =
P
=1

−1()()()

The recursive formula is obtained by simply noticing that the only way to end up in state  at time ,
for  in {2  }, while producing the observation sequence 1 is to have been in some prior state
 at time  − 1 and having produced 1−1 (probability −1()) and moving from state  to state
 in the next step (probability ) while producing the observation  in state  at time  (probability
()()). Independence of these events implies the product −1()()() of these probabilities
is the probability of such an event.
There are many ways to express  ( |) as a function of the other introduced quantities:

 ( |) =
P
=1

 ( =   1 |) =
P
=1

 ()

=
P
=1

P
=1

 ( =   +1 =   |) =
P
=1

P
=1

( ) for every 

Hence computing the forward paths gives an efficient algorithm to obtain the likelihood of observing 
given the model .

Let  be in {1  } and  be in {1  }. We define the "backward paths" () as:

 () = 1 by convention, and:

() =  ( =   +1 |)

They can be computed recursively in a similar fashion to the (), but "backward", meaning, starting
from  =  − 1, as

() =
P
=1

 +1()(+1)+1()

Indeed () =  ( =   +1 |) =
P

=1  +1()(+1) (+1 =  +2 |).

Now, it follows trivially from the definition of () and () that, for all  in {1  } and all  in
{1  }:

 ( =    |) = ()()

Hence the expression for ():

() =
()()

 ( |)

Similarly we can compute the ( ) from the () and () as:

( ) =  ( =  +1 =  |)

=
 ( =   +1 =   |)

 ( |)

=
() +1()(+1)+1()

 ( |)

Also, notice that, for  in {1   − 1} :

() =
P
=1

( )

This is the formula we used for computing () from the ( ), with the exception of  =  .
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The second step We know turn our attention to the maximisation of the log-likelihood estimate
obtained. As mentionned earlier, the three terms appearing in the sum can be maximised separately. To
prove all the three results above is simply done by equating the partial derivatives to 0. We do not detail
the computation, but the two first results can be found in the literature (see for example, [30]).

a) The first term,
P

=1 1() log(), is maximised for  = 1().

b) The second for  =
P

=1


where  :=
P−1

=1 ( ).

c) The third term, as noticed above, can be split for the purpose of maximisation into  distinct
maximisation problems. The value or set of values which realise the maximum depends, of course, of the
form assumed for the probability distribution functions (). In the case of a binomial distribution of
parameter  and , we get:

P
=1

() log(()()) =
P
=1

()(log(

µ




¶
) + log() + ( − ) log(1− ))

whose maximum is attained at:

 =

P
=1 ()P
=1 ()

Notice that  is the number of defaults at time , hence the number above makes sense; in particular
 belongs to [0 1]. In the particular case where  =:  is constant (as assumed for example when dealing
with rates) meaning that at each step it is assumed that the number of re-introduced loans compensates

exactly for the previous step defaults, we get the somehow simpler formula:  =
1


P

=1
()P

=1
()

.

7.1.3 Obtention of confidence interval through parametric bootstrap

Parametric bootstrapping simply consists in simulating with the fitted model bΘ a large number  of
samples of the same size  and fitting each of the simulated sample to obtain parameter estimates
cΘ1cΘ2 dΘ . The empirical distribution of these estimates cΘ1cΘ2 dΘ then provides an indica-
tion about the model stability. In particular, an empirical variance-covariance matrix of all the model
parameters can be computed in the usual way:

d (bΘ) = 1

 − 1
X

=1

(cΘ − bΘ)0(cΘ − bΘ)

where bΘ := 1


P
=1

cΘ and
0 denote the matrix transpose operator.

Notice that the initial guessed values for the estimate still have to be selected. As a rule, we decided
to always select the same initial values than the one which led to the fitted model bΘ.

7.1.4 Obtention of  step forward forecasts from the model

Assume we want to obtain the  step forward forecast from the HMM model  at time . As we observed
1, the probability of observing + in  periods from now, where + is, in this section, any
element of the observation set {1 2  }, is simply the quantity

 (+ |1 ) =
 (+  1 |)

 (1 |)
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Clearly,  (1 |) =
P

=1 (). For the numerator now, using in a similar way the formula for
total probabilities, we can write:

 (+  1 |) =
P
=1

 (+  =  1 |)

=
P
=1

P
=1

 (+ + =   =  1 |)

=
P
=1

P
=1

()()+()(+)

where () :=  (+ =  | = ) is simply the ( ) th coefficient of the matrix  (easy to check).
Hence:

 (+ |1 ) =

P
=1

P
=1 ()()+()(+)

P
=1 ()

=
P
=1

P
=1

e()()+()(+)

where e() =
()P

=1
()

are the rescaled forward paths.

In the case of one step forward forecasts for a two state HMM this becomes:

 (+1 |1 ) = e(1)11+1()(+1) + e(1)12+1(2)(+1) +

e(2)21+1(1)(+1) + e(2)22+1(2)(+1)

Remark: in case we would like to obtain out-of-sample forecasts from a HMM model, notice that
these forward forecasts are not strictly speaking out-of-sample forecasts when the parameter estimates of
the fitted model have taken into account the observations after time .

7.1.5 Assessing the goodness-of-fit of the model through the forward mid-pseudo residuals

Let e+1 be the random variable indicating the number of defaults at time +1. Hence, its realisation is

+1. From the above we can compute the empirical cumulative distribution function of e+1 conditional
on the model  and on observing 1: this is simply

 ( e+1 ≤  |1 ) =
P
≤

 ( |1 )

where  ( |1 ) can be computed from the formula given in Section 7.1.4.

The one-step ahead forward pseudo-residual at time  is then, by definition:

 ( e+1 ≤ +1 |1 )

By applying Lemma 2 at each different time , for  in {1  }, we get that these forward pseudo-
residuals are all uniformely distributed. This provides a way to assess the goodness-of-fit of the model:
if the data-generating process is indeed equal or close to the fitted model, we should observe that the
forward pseudo-residuals follow closely a uniform distribution. This can be check visually using histogram
and (uniform) quantile-to-quantile plot.

A drawback of the use of a uniform distribution is that it is difficult to determine outliers, as low or
high values are repectively mapped close to 0 or 1. Hence we further transform these uniformly distributed
quantiles into standard normal ones using Lemma 1: if Φ is the cdf of a standard normal law, then the

 = Φ
−1( ( e+1 ≤ +1 |1 ))
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are realisations of a standard normal law.
Because the probability distribution of the number of default is discrete, we make a last adjustement

by considering the average of the uniform upper and lower quantiles before applying Φ−1. Hence, we get:

 = Φ
−1(

 (  +1 |1 ) +  ( ≤ +1 |1 )

2
)

These are called (normal) mid-pseudo residuals, and normality tests can be performed directly on the .

7.1.6 Non-homogeneous hidden Markov chains

Markov chains can be made dependent on covariates (), which can result in non-stationary processes
for the coefficients of the transition probability matrix . The algorithms described in the previous
sections are still valid when one
- replaces the  by (), where () is the ( ) th coefficient of the transition probability matrix

at time , denoted by (),
- specifies a dependence structure betwen () and the covariates (). For example, the loggistic

transformation with () representing a single covariate gives the model:

() =
1

exp(()Ψ + )

() = 1− () for  6= 

with Ψ and  parameters to estimate.
- replaces the second step of Section 7.1.2 by numerical maximisation, as no closed-formula is known.
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